Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Phú Thọ (Có đáp án)

doc 4 trang dichphong 10230
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Phú Thọ (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2012_2013.doc

Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Phú Thọ (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH PHÚ THỌ VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2012-2013 ĐỀ CHÍNH THỨC Môn toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Đề thi có 01 trang Câu1 (2đ) a) Giải phương trình 2x-5=1 b) Giải bất phương trình 3x-1>5 Câu2 (2đ) 3x y 3 a) Giải hệ phương trình 2x y 7 1 1 6 b) Chứng minh rằng 3 2 3 2 7 Câu 3 (2đ) Cho phương trình x2 -2(m-3)x – 1 =0 a) Giải phương trình khi m=1 b) Tìm m để phương trình có nghiệm x1 ; x2 mà biểu thức 2 2 A=x1 – x1x2 + x2 đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. Câu 4 (3đ) Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N. a) CMR: ABC= DBC b) CMR: ABDC là tứ giác nội tiếp. c) CMR: ba điểm M, D, N thẳng hàng d) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất. 2 2 x 5y 8y 3 Câu 5 (1đ) Giải Hệ PT (2x 4y 1) 2x y 1 (4x 2y 3) x 2y Hết
  2. Gợi ý và đáp án Câu1 (2đ) a) Giải phương trình 2x-5=1 b) Giải bất phương trình 3x-1>5 Đáp án a) x=3 ; b) x>2 3x y 3 Câu2 (2đ) a) Giải hệ phương trình 2x y 7 1 1 6 b) Chứng minh rằng 3 2 3 2 7 Đáp án a) x=2 ; y= -3 3 2 3 2 6 b) VT = =VP (đpcm) 9 2 7 Câu 3 (2đ) Cho phương trình x2 -2(m-3)x – 1 =0 c) Giải phương trình khi m=1 d) Tìm m để phương trình có nghiệm x1 ; x2 mà biểu thức 2 2 A=x1 – x1x2 + x2 đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó. Đáp án a) x1 = 2 5 ; x2 = 2 5 e) Thấy hệ số của pt : a=1 ; c=-1 => pt luôn có 2 nghiệm Theo vi-ét ta có x1 + x2 =2(m-3) ; x1x2 = -1 2 2 2 2 Mà A=x1 – x1x2 + x2 = (x1 + x2 ) - 3x1x2 = 4(m-3) + 3 3 => GTNN của A = 3  m=3 Câu 4 (3đ) Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N. e) CMR: ABC= DBC f) CMR: ABDC là tứ giác nội tiếp. g) CMR: ba điểm M, D, N thẳng hàng h) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất. Hướng dẫn a) Có AB=DB; AC=DC; BC chung => ABC= DBC (c-c-c) b) ABC= DBC => góc BAC=BDC =90 => ABDC là tứ giác nội tiếp
  3. A 1 2 4 3 M 1 2 B 1 2 C 1 2 3 4 D 1 2 N c) Có gócA1 = gócM1 ( ABM cân tại B) gócA4 = gócN2 ( ACN cân tại C) gócA1 = gócA4 ( cùng phụ A2;3 )  gócA1 = gócM1 =gócA4= gócN2 gócA2 = gócN1 ( cùng chắn cung AD của (C) ) 0 0 Lại có A1+A2+A3=90 => M1+N1+A3 = 90 0 Mà AMN vuông tại A => M1+N1+M2 = 90 => A3=M2 => A3 = D1 CDN cân tại C => N1;2 = D4 D 2;3 + D1 + D4 =D2;3 + D1 + N1;2 =D2;3 + M2 + N1 + N2 0 = 90 + M2 + N1 + M1 ( M1 =N2) =900 + 900 =1800  M; D; N thẳng hàng. d) AMN đồng dạng ABC (g-g) Ta có NM2 = AN2 +AM2 để NM lớn nhất thì AN ; AM lớn nhất Mà AM; AN lớn nhât khi AM; AN lần lượt là đường kính của (B) và (C) Vậy khi AM; AN lần lượt là đường kính của (B) và (C) thì NM lớn nhất. 2 2 x 5y 8y 3 Câu 5 (1đ) Giải Hệ PT (2x 4y 1) 2x y 1 (4x 2y 3) x 2y Hướng dẫn 2 2 x 5y 8y 3 (2x 4y 1) 2x y 1 (4x 2y 3) x 2y
  4. 2 2 x 5y 8y 3(1)  (2 x 2y 1) 2x y 1 (2 2x y 1 1) x 2y(2) Từ (2) đặt x+2y=a ; 2x-y-1 = b (a:b 0) Ta dc (2a-1)b =(2b-1)a  (a b )(2ab 1) =0  a=b  x=3y+1 thay vào (1) ta dc 2 2y – y – 1=0 => y1 =1 ; y2 =-1/2 => x1 =4 ; x2 = -1/2 Thấy x2 + 2y2 =-1<0 loại Vậy hệ có nghiệm (x;y) = (4;1) GV Trần Bình Trân THCS Phượng Lâu –Việt Trì - Phú Thọ mọi góp ý lời giải liên hệ gmail: tbtran1234@gmail.com số điện thoại: 0988280207