Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo Trà Vinh

doc 1 trang dichphong 4660
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo Trà Vinh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_mon_toan_nam_hoc_2018_2019_so_g.doc

Nội dung text: Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo Trà Vinh

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TRÀ VINH NĂM HỌC 2018-2019 MÔN THI: TOÁN ĐỀ CHÍNH THỨC Thời gian: 120 phút (không kể thời gian phát đề) Thí sinh làm các câu sau: Bài 1. (3,0 điểm) 1. Rút gọn biểu thức: 2 75 3 48 4 27 2x y 8 2. Giải hệ phương trình: 3x 2y 5 3. Giải phương trình: 3x2 7x 2 0 Bài 2. (2,0 điểm) Cho hai hàm số y x 2 vày x2 có đồ thị lần lượt là (d) và (P) 1. Vẽ (d) và (P) trên cùng hệ trục tọa độ. 2. Bằng phép toán, tìm tọa độ giao điểm của (d) và (P) Bài 3. (1,0 điểm) Cho phương trình: x2 (m 1)x m 2 0 ( với m là tham số) 1. Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m. 2. Tìm các số nguyên m để phương trình có nghiệm nguyên. Bài 4. (1,0 điểm) Cho tam giác ABC vuông tại A, đường cao AH (H BC). Biết BH=3,6cm và HC = 6,4cm. Tính độ dài BC, AH, AB, AC. Bài 5. (3,0 diểm) Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm của cạnh AC. Đường tròn đường kính MC cắt BC tại N. Đường thẳng BM cắt đường tròn đường kính MC tại D. 1. Chứng minh tứ giác BADC nội tiếp. 2. Chứng minh DB là phân giác của góc AND. 3. BA và CD kéo dài cắt nhau tại P. Chứng minh ba điểm P, M, N thẳng hàng. Hết