Đề khảo sát chất lượng giữa kỳ I môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo Tiền Hải (Có đáp án)

doc 4 trang dichphong 10030
Bạn đang xem tài liệu "Đề khảo sát chất lượng giữa kỳ I môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo Tiền Hải (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_khao_sat_chat_luong_giua_ky_i_mon_toan_lop_9_nam_hoc_2017.doc

Nội dung text: Đề khảo sát chất lượng giữa kỳ I môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo Tiền Hải (Có đáp án)

  1. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA KỲ I, NĂM HỌC 2017–2018 TIỀN HẢI MÔN TOÁN 9 ( Thời gian làm bài 90 phút ) Bài 1 (2,0 điểm). 1. Thực hiện phép tính. a) 81 80. 0,2 1 b) (2 5)2 20 2 2. Tìm điều kiện của x để các biểu thức sau có nghĩa: 1 a) x 1 b) x2 2x 1 Bài 2 (2,0 điểm). 1. Phân tích đa thức thành nhân tử. a) ab b a a 1 (với a 0 ) b)4a 1 (với a 0 ) 2. Giải phương trình: 9x 9 x 1 20 Bài 3 (2,0 điểm). 1 1 1 x Cho biểu thức A = : (với x > 0; x 1) x 2 x x 2 x + 4 x 4 a) Rút gọn biểu thức A. 5 b) Tìm x để A = 3 Bài 4 (3,5 điểm). Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 8cm, BH = 2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH. b) Trên cạnh AC lấy điểm K (K A, K C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC 1 c) Chứng minh rằng: S S cos2 ·ABD BHD 4 BKC Bài 5 (0,5 điểm). Cho biểu thức P x3 y3 3(x y) 1993 . Tính giá trị biểu thức P với: x 3 9 4 5 3 9 4 5 và y 3 3 2 2 3 3 2 2 Hết Họ và tên: Số báo danh: Phòng thi:
  2. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HDC KHẢO SÁT CHẤT LƯỢNG GIỮA KỲ I, NĂM HỌC 2017–2018 TIỀN HẢI MÔN TOÁN 9 Bài 1 (2,0 điểm). 1. Thực hiện phép tính: a) 81 80. 0,2 1 b) (2 5)2 20 2 2. Tìm điều kiện của x để các biểu thức sau có nghĩa: 1 a) x 1 b) x2 2x 1 Ý Nội dung Điểm 1.a 81 80. 0,2 92 80.0,2 0.25 0.5đ 9 16 9 4 5 0.25 2 1 1 1.b (2 5) 20 2 5 .2 5 0.25 2 2 0.5đ 5 2 5 2 0.25 2.a Biểu thức x 1 có nghĩa x 1 0 0.25 0.5đ x 1 . 0.25 1 1 2.b 0 x2 2x 1 0 0.25 Biểu thức x2 2x 1 có nghĩa x2 2x 1 0.5đ 2 (x 1) 0 x 1 0.25 Bài 2 (2,0 điểm) 3. Phân tích đa thức thành nhân tử: c) ab b a a 1 (với a 0 ) d)4a 1 (với a 0 ) 4. Giải phương trình: 9x 9 x 1 20 Ý Nội dung Điểm 1.a Với a 0 ta có: ab b a a 1 b a( a 1) ( a 1) 0.25 0.5đ ( a 1)(b a 1) 0.25 Với a 0 a 0 1.b 2 2 2 0.25 ta có: 4a 4.( a) (2 a) 1 4a 1 (2 a) 0.5đ (1 2 a)(1 2 a) 0.25 ĐK: x 1 0.25 9x 9 x 1 20 9(x 1) x 1 20 3 x 1 x 1 20 2 0.25 1.0đ 4 x 1 20 x 1 5 x 1 25 x 24 (T/m ĐKXĐ) 0.25 Vậy phương trình có nghiệm duy nhất x = 24 0.25
  3. Bài 3 (2,0 điểm). 1 1 1 x Cho biểu thức A = : (với x > 0; x 1) x 2 x x 2 x + 4 x 4 a) Rút gọn biểu thức A. 5 b) Tìm x để A = 3 Ý Nội dung Điểm 1 1 1 x Với x 0, x 1 ta có A = : 2 0.25 x( x 2) x 2 ( x+2) 1 x ( x 2)2 = . 0.25 x( x 2) x( x 2) 1 x a 1 x ( x 2)2 1.25đ = . 0.25 x( x 2) 1 x x 2 = 0.25 x x 2 Vậy A = (với x > 0; x 1) 0.25 x 5 x 2 5 A (ĐK: x > 0 ; x 1) 3 x 3 0.25 b 3( x 2) 5 x 0.75đ 2 x 6 x 3 x 9 (TMĐK) 0.25 5 Vậy với x = 9 thì A . 0.25 3 Bài 4 (3,5 điểm). Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 8cm, BH = 2cm. d) Tính độ dài các đoạn thẳng AB, AC, AH. e) Trên cạnh AC lấy điểm K tùy ý (K A, K C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC. 1 f) Chứng minh rằng: S S .cos2 ·ABD BHD 4 BKC Ý Nội dung Điểm A K a D 1.5đ B C H I E + ABC vuông tại A, đường cao AH AB2 BH.BC 2.8 16 0.25 AB 4cm (Vì AB > 0) 0.25
  4. Ý Nội dung Điểm + BC 2 AB2 AC 2 (Định lý Pitago trong tam giác vuông ABC) 0.25 2 2 2 2 AC BC AB 8 4 48 4 3cm 0.25 + Có HB + HC = BC HC = BC – HB = 8 – 2 = 6 cm 0.25 AH 2 BH.CH 2.6 12 AH 12 2 3cm (Vì AH > 0) 0.25 2 b + ABK vuông tại A có đường cao AD AB BD.BK (1) 0.5 1.0đ + MàAB2 BH.BC (Chứng minh câu a ) (2) 0.25 Từ (1) và (2) BD.BK = BH.BC 0.25 + Kẻ DI  BC,KE  BC(I,K BC) 1 BH.DI S 2.DI 1 DI 0.25 BHD 2 . (3) S 1 8.KE 4 KE BKC BC.KE 2 c DI BD 1.0đ + BDI : BKE (4) 0.25 KE BK + ABK vuông tại A có: AB AB2 BD.BK BD 0.25 cos·ABD cos2 ·ABD (5) BK BK 2 BK 2 BK SBHD 1 2 · 1 2 · Từ (3), (4), (5) .cos ABD SBHD SBKC cos ABD 0.25 SBKC 4 4 Bài 5 (0,5 điểm). Cho biểu thức P x3 y3 3(x y) 1993 . Tính giá trị biểu thức P với: x 3 9 4 5 3 9 4 5 và y 3 3 2 2 3 3 2 2 Ý Nội dung Điểm Ta có: x3 18 3x x3 3x 18 0.25 y3 6 3y y3 3y 6 P x3 y3 3(x y) 1993 0.5đ (x3 3x) (y3 3y) 1993 18 6 1993 2017 0.25 Vậy P = 2017 3 3 3 3 với x 9 4 5 9 4 5 và y 3 2 2 3 2 2 Lưu ý: - Trên đây là các bước giải cơ bản cho từng bài, từng ý và biểu điểm tương ứng, học sinh phải có lời giải chặt chẽ chính xác mới công nhận cho điểm. - Học sinh có cách giải khác đúng đến đâu cho điểm thành phần đến đó. - Điểm toàn bài là tổng điểm thành phần không làm tròn.