Tuyển tập đề Toán thi vào Lớp 10 - Nguyễn Tăng Vũ
Bạn đang xem 20 trang mẫu của tài liệu "Tuyển tập đề Toán thi vào Lớp 10 - Nguyễn Tăng Vũ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- tuyen_tap_de_toan_thi_vao_lop_10_nguyen_tang_vu.pdf
Nội dung text: Tuyển tập đề Toán thi vào Lớp 10 - Nguyễn Tăng Vũ
- Nguyễn Tăng Vũ Đề thi vào lớp 10 ĐỀ TOÁN THI VÀO LỚP 10 Mấy năm gần đây nhu cầu thi vào các lớp 10 chuyên của học sinh ngày càng nhiều. Điều các học sinh quan tâm là cách thức ra đề cũng như yêu cầu kiến thức của từng trường như thế nào. Để đáp ứng nhu cầu đó chúng tôi xin giới thiệu tập tài liệu tham khảo: Bộ đề thi tuyển sinh vào các lớp 10 trường chuyên trên địa bàn thành phố Hồ Chí Minh. Đây là bộ đề thi môn toán tuyển sinh vào lớp 10 các trường phổ thông trung học chuyên trên phạm vi thành phố. Trong đó chủ yếu là các đề thi vào các trường chuyên Lê Hồng Phong, Trần Đại Nghĩa, trường Phổ Thông Năng Khiếu – ĐHQG TPHCM và Lớp chuyên toán của trường Trung Học Thực Hành – ĐHSP TPHCM. Kể từ năm học 2006 – 2007 thì đề thi vào 10 lớp bình thường cũng như các lớp chuyên của trường LHP và TĐN là đề thi chung do thành phố ra, còn các trường THTH và PTNK vẫn tuyển riêng. Bộ đề này chỉ gồm các đề thi bắt đầu từ năm học 2001 – 2002 đến nay. Hi vọng rằng đây là bộ tài liệu tham khảo hữu ích cho các em học sinh chuẩn bị thi vào các lớp 10 chuyên cũng như các thầy cô giáo quan tâm đến kì thi này. 1
- Nguyễn Tăng Vũ Đề thi vào lớp 10 1. Thi vào trường Lê Hồng Phong Năm học 2001 – 2002 Đề thi chung Bài 1: Cho phương trình a) Định m để phương trình có nghiệm b) Định m để phương trình có hai nghiệm x1, x2 thoả mãn: Bài 2: Chứng minh các bất đẳng thức sau: a) với mọi b) c) với mọi a, b, c, d, e Bài 3: Giải các phương trình sau: a) b) Bài 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O và có trực tâm là H. Lấy điểm M thuộc cung nhỏ BpC . a) Xác định vị trí điểm M sao cho tứ giác BHCM là một hình bình hành b) Với M lấy bất kì thuộ cung nhỏ BpC , gọi N, E lần lượt là các điểm đối xứng của M qua AB, AC. Chứng minh rằng N, H, E thẳng hàng c) Xác định vị trí của M thuộc cung nhỏ BpC sao cho NE có độ dài lớn nhất Bài 5: Cho đường tròn cố định tâm O, bán kính bằng 1. Tam giác ABC thay đổi và luôn ngoại tiếp đường tròn (O). Một đường thẳng đi qua tâm O 2
- Nguyễn Tăng Vũ Đề thi vào lớp 10 và cắt các cạnh AB, AC lần lượt tại M, N. Xác định giá trị nhỏ nhất của diện tích tam giác AMN. Năm học 2002 – 2003 Đề thi chung Bài 1: Rút gọn các biểu: a) b) Bài 2: Cho phương trình: a) Chứng minh rằng phương trình có hai nghiệm phân biệt b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu thức Bài 3: a) Chứng minh: b) Chứng minh: c) Cho x, y > 0 và x + y = 1. Chứng minh rằng: Bài 4: Giải các phương trình sau: a) b) Bài 5: Cho đường tròn (O; R) và đường thẳng (d) không qua O cắt đường tròn (O) tại hai điểm A, B. Từ một điểm di động M trên đường thẳng (d) và ở ngoài (O), ta vẽ hai tiếp tuyến MN, MP với đường tròn (O) (N, P là hai tiếp điểm) a) Chứng minh rằng 3
- Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Chứng minh đường tròn ngoại tiếp tam giác MNP đi qua một điểm cố định khi M lưu động trên đường thẳng (d) c) Xác định vị trí điểm M trên đường thẳng (d) sao cho tứ giác MNOP là một hình vuông d) Chứng minh rằng tâm I của đường tròn nội tiếp tam giác MNP lưu động trên một đường cố định khi M lưu động trên (d) Đề thi vào lớp chuyên toán Bài 1: Tìm các giá trị của m để phương trình sau có nghiệm và tính các nghiệm ấy theo m: Bài 2: Phân tích đa thức thành nhân tử: Ax= 10++ x 5 1 Bài 3: Giải các phương trình và hệ phương trình: Bài 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) và có AB < AC. Lấy điểm M thuộc cuung BC không chứa điểm A của đường trònh (O). Vẽ MH vuông góc BC, MK vuông góc CA, MI vuông góc AB( H thuộc BC, K thuộc AC, I thuộc AB). Chứng minh Bài 6: Cho tam giác ABC, giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E 4
- Nguyễn Tăng Vũ Đề thi vào lớp 10 và có AD = AE. Chứng minh rằng , với R là bán kính đường tròn ngoại tiếp tam giác ABC. Năm học 2003 – 2004 Đề thi chung Bài 1: Cho phương trình: a) Tìm m để phương trình có hai nghiệm phân biệt đều âm b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để có Bài 2: a) Cho và . Chứng minh: b) Tìm giá trị nhỏ nhất của biểu thức Bài 3: Giải các hệ phương trình sau: a) b) Bài 4: Chứng minh rằng nếu thì ít nhất một trong hai phương trình sau có nghiệm: Bài 5: Cho đường tròn tâm O đường kính AB. Gọi K là trung điểm cung pAB , M là điểm lưu động trên cung nhỏ pAK ( M khác A và K). Lấy điểm N trên đoạn BM sao cho: BN = AM. a) Chứng minh rằng b) Chứng minh tam giác MNK vuông cân c) Hai đường thẳng AM và Ok cắt nhau tại D. Chứng minh MK là đường phân giác của góc d) Chứng minh đường thẳng vuông góc với BM tại N luôn đi qua một điểm cố định Bài 6: Cho tam giác ABC có BC = a, CA = b, AB = c và có R là bán kính đường tròn ngoại tiếp thoả mãn hệ thức . Hãy định dạng tam giác ABC. 5
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Đề thi vào lớp chuyên toán Bài 1: a) Rút gọn biểu thức: b) Tìm giá trị nhỏ nhất của biểu thức: Bài 2: Giải các phương trình và hệ phương trình sau a) b) Bài 3: Phân tích thành nhân tử: . Áp dụng giải phương trình Bài 4: Cho hai phương trình: Chứng minh rằng nếu ít nhất một phương trình trong hai phương trình trên vô nghiệm thì phương trình sau luôn có nghiệm: Bài 5: Cho tam giác ABC vuông tại A ( AB < AC) có đường cao AH và trung tuyến AM. Vẽ đường tròn tâm H bán kính AH, cắt AB tại D, cắt AC tại E ( D và E khác điểm A). a) Chứng minh D, H, E thẳng hàng b) Chứng minh và MA vuông góc với DE. c) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn tâm O. Tứ giác AMOH là hình gì? d) Cho góc và AH = a. Tính diện tích tam giác AEC theo a. Bài 6: 6
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Cho hình thang ABCD có hai đường chéo AC và BD cùng bằng cạnh đáy lớn AB. Gọi M là trung điểm của CD. Cho biết . Tính các góc của hình thang. Năm học 2004 – 2005 Đề thi chung I. Phần tự chọn: Học sinh chọn một trong hai bài sau đây: Bài 1a: Cho phương trình: xmxm2 −++−=312180( ) a) Tìm m để phương trình có hai nghiệm phân biệt đều âm b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để có xx12−≤5 Bài 1b Rút gọn các biểu thức sau: xxxx22−+ a) A =−++x 1 xx++11 xx −+ ⎛⎞⎛⎞22+−+−−xxxxxx 1 b) B =−⎜⎟⎜⎟ ⎝⎠⎝⎠xx++21x −1 x I. Phần bắt buộc: Bài 2: Giải các phương trình: a) 3422x2 +−=−xx 2x2 b) 2 =+x 9 ()392−+x Bài 3: a) Cho x ≥≥1,y 1 . Chứng minh rằng: x yyxxy−11+−≤ b) Cho x > 0, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức ⎛⎞11⎛⎞ A =−⎜⎟⎜⎟1122 − ⎝⎠x ⎝⎠y Bài 4: 2 ⎪⎧yx−−−≥ x10 Tìm các số nguyên x, y thoả hệ: ⎨ ⎩⎪ yx− 2110++−≤ Bài 5: 7
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Cho đường tròn tâm O. Từ điểm M ở ngoài đường tròn (O) vẽ các tiếp tuyến MC, MD với (O)( C, D là các tiếp điểm). Vẽ các tuyến MAB không đi qua tâm O, A nằm giữa M và B. Tia phân giác của góc ACBn cắt AB tại E. a) Chứng minh MC = ME b) Chứng minh DE là phân giác góc ADB c) Gọi I là trung điểm của đoạn thẳng AB. Chứng minh 5 điểm O, I, C, M, D cùng nằm trên một đường tròn d) Chứng minh IM là phân giác CIDn Bài 6: Cho hình thang ABCD có hai cạnh đáy là BC và AD(BC > AD). Trên tia đối của của tia CA lấy một điểm P tuỳ ý. Đường thẳng qua P và trung điểm I của BC cắt AB tại M, đường thẳng qua P và trung điểm J của AD cắt CD tại N. Chứng minh MN song song AD. Đề thi vào lớp chuyên toán Bài 1: ⎧ 36 ⎪ − =−1 ⎪2xy−+ xy Giải hệ phương trình: ⎨ 11 ⎪ − = 0 ⎪⎩2xy−+ xy Bài 2: 1 1 Cho x > 0 và thoả x2 +=7 . Tính x5 + x2 x5 Bài 3: 3x Giải phương trình = 311x +− 310x + Bài 4: a) Tìm giá trị nhỏ nhất của biểu thức: Px=+−522 9 y 12 xyx +−+ 24 48 y 82 ⎧xyz++=3 b) Tìm các số nguyên x, y thoả hệ ⎨ 333 ⎩xyz+ +=3 Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O( AB < BC). Vẽ đường tròn tâm I qua 2 điểm A và C cắt các đoạn AB, BC lần 8
- Nguyễn Tăng Vũ Đề thi vào lớp 10 lượt tại M, N. Vẽ đường tròn tâm J đi qua 3 điểm B, N, M cắt đường tròn (O) tại điểm H. Chứng minh rằng a) OB vuông góc với MN b) IOBJ là hình bình hành c) BH vuông góc với IH 9
- Nguyễn Tăng Vũ Đề thi vào lớp 10 2. Thi vào trường Trần Đại Nghĩa Năm học: 2001 – 2002 Bài 1: Cho phương trình : mx2 − 22( m++=) x m 0. a) Định m để phương trình có nghiệm. b) Định m để phương trình có hai nghiệm phân biệt đều âm. Bài 2: Giải các phương trình: a) 25131xx2 −+=− x b) −+=x2 22 −x . Bài 3: Giải các hệ phương trình: ⎪⎧x3 =−2yx a) ⎨ 3 ⎩⎪yxy=−2 ⎪⎧x −=yyxxy( −)()1 + b) ⎨ . 33 ⎪⎩xy+=54 Bài 4: Chứng minh bất đẳng thức: x22+ yxyxy+≥1 + + . Bài 5: Cho đường tròn (O; R) và một điểm P thuộc (O). Từ P vẽ hai tia Px, Py lần lượt cắt đường tròn (O) tại A và B. Cho góc xPyn là góc nhọn. a) Vẽ hình bình hành APBM. Gọi K là trực tâm của tam giác ABM. Chừng minh rằng K thuộc (O). b) Gọi H là trực tâm của tam giác APC và I là trung điểm của đoạn AB. Chứng minh H, I, K thẳng hàng. c) Khi hai tia Px, Py quay quanh P cố định sao cho PX, Py vẩn cắt (O) và góc xPyn không đổi thì H lưu động trên đường cố định nào? 10
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Năm học 2002 – 2003 Đề thi chung Bài 1: Cho phương trình : 5280xmx2 + −=. Định m để phương trình có hai nghiệm x1, x2 thoả 521xx12+=. Bài 2: 2 Cho phương trình ax++= bx c00( a ≠) có hai nghiệm phân biệt x1, x2 2 32 2 thoả x12= x . Chứng minh bacacabc++=3 . Bài 3: Giải các phương trình và hệ phương trình: a) xx−+330 + = 2 ⎧⎪()()xy+−+=412 xy b) ⎨ 2 ⎩⎪()()xy−−−=23 xy Bài 4: Thu gọn biểu thức sau: A =−622121882 + + − Bài 5: Cho a, b, c là độ dài 3 cạnh của một tam giác và p là nửa chu vi của tam giác đó. 1 a) Chứng minh ()()()papbpc−−−≤ abc. 8 b) Chứng minh rằng phương trình sau đây vô nghiệm: cxabcxb22+−−( 2 2 2) += 2 0. Bài 6: Cho đường tròn (O; R) có đường kính AB cố định và đường kính CD thay đổi. (CD không trùng AB). Vẽ tiếp tuyến (d) của đường tròn (O) tại B. Các đường thẳng AC, AD cắt (d) lần lượt tại P và Q. a) Chứng minh tứ giác CPQD là một tứ giác nội tiếp b) Chứng minh trung tuyến AI của tam giác APQ vuông góc với CD. 11
- Nguyễn Tăng Vũ Đề thi vào lớp 10 c) Gọi E là tâm đường tròn ngoại tiếp tam giác CDP. Chứng minh E lưu động trên một đường tròn cố định khi đường kính CD thay đổi. Năm học 2003 – 2004 Đề thi chung Bài 1: Cho phương trình xmxm2 −++−=(23) 30. a) Chứng tỏ rằng phương trình luôn luôn có nghiệm. b) Gọi x1, x2 là các nghiệm của phương trình trên. Tìm m để x12− x đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất ấy. Bài 2: xy++ xy a) Cho x BC)Gọi M là giao điểm của DB và AC. Hai tiếp tuyến của đường tròn (O) tại A và D cắt nhau tại I. a) Chứng minh ba điểm I, O, M thẳng hàng b) Chứng minh bán kính đường tròn ngoại tiếp tam giác MCD không đổi. 12
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 6: Cho tam giác ABC không phải là tam giác đều và có 3 góc nhọn. Đường cao AH, đường trung tuyến BM, đường phân giác CE lần lượt cắt nhau và các giao điểm tạo thành tam giác PQR. Tam giác PQR có thể là tam giác đều không? Đề thi vào lớp chuyên toán Bài 1: Giải các phương trình: a) (6734xxx+++=)2 ( )( 10) b) 45610123( x +++)( xx)( )( x +=) x2 Bài 2: ⎧424xy+ += z Cho x ≥≥≥0,yz 0, 0 thoả ⎨ ⎩3626xyz+ −= Tìm giá trị nhỏ nhất và giá trị lớn nhất của A = 5x -6y + 7z. Bài 3: Phân tích thành nhân tử: A =−( xy)555 +−( yz) +−( zx) Bài 4: Cho phương trình: xpxq2 ++=0. a) Chứng minh rằng nếu 290pq2 − = thì phương trình có 2 nghiệm phân biệt và nghiệm này gấp đối nghiệm kia. b) Cho p, q là các số nguyên. Chứng minh rằng nếu phương trình có nghiệm hữu tỉ thì nghiệm ấy phải là số nguyên. Bài 5: Cho tam giác đều ABC có cạnh a. Hai điểm M, N lưu động trên hai AM AN đoạn AB và AC sao cho + = 1. Đặt AM = x, AN = y. MB NC a) Chứng minh rằng MNxyxy222= +−. b) Chứng minh MN = a – x – y c) Chứng tỏ rằng MN luôn tiếp xúc với đường tròn nội tiếp tam giác ABC. 13
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 6: Cho góc xnOy cố định. Có hai điểm M, N lần lượt lưu động trên hai tia Ox, Oy sao cho OM + ON = 2k.( k là hằng số dương). Trung điểm I của MN lưu động trên đường cố định nào? Năm học: 2004 – 2005 Đề thi chung Bài 1: Cho phương trình: xm42−+(3144122) xm ++( )( −= m) 0. a) Định m để phương trình có 4 nghiệm phân biệt. b) Định m sao cho tích 4 nghiệm của phương trình trên có giá trị lớn nhất. Bài 2: Giải các phương trình: a) x22++−=−2112xx 12x − 8 b) 2422xx+− −= 916x2 + Bài 3: Cho x, y là các số thực khác 0. Chứng minh: x22yxy⎛⎞ 22+≥3⎜⎟ + yx⎝⎠ yx Bài 4: Tìm các số nguyên x, y thoả mãn phương trình: x2222++=xy y x y . Bài 5: Cho tam giác ABC cân tại A và nội tiếp trong đường tròn (O;R). Vẽ tam giác đềuACD ( D và B khác phía đối với đường thẳng AC). Gọi E là giao điểm của BD với đường tròn (O), gọi M là giao điểm của BD với đường cao AH của tam giác ABC. a) Chứng minh MADC là tứ giác nội tiếp b) Tính DE theo R. 14
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 6: Cho tam giác ABC cân tại B nội tiếp trong đường tròn tâm O. Trên cung AC không chứa B lấy hai điểm M và K theo thứ tự A, K, M, C. Các đoạn thẳng AM và BK cắt nhau tại E, còn các đoạn thẳng KC và BM cắt nhau tại D. Chứng minh ED song song với AC. Đề thi vào lớp chuyên toán Bài 1: 2 Cho phương trình: : xpx+ +=10 có hai nghiệm phân biệt a1, a2 và 2 phương trình xqx++=10 có hai nghiệm b1, b2. Chứng minh rằng 22 (abababab1221122−−++=−a )( )( )( ) q p. Bài 2: Cho các số a, b, c, x, y, z thoả x = by+=+=+ cz,, y ax cz z ax by , và 111 x,,yz≠ 0. Chứng minh rằng: + +=2. abc+++111 Bài 3: a) Tìm x, y thoả 5582220xyxyxy22+++−+= b) Cho các số dương x, y, z thoả: xyz333+ +=1. xyz222 Chứng minh: ++≥2 . 111−−−xyz222 Bài 4: Chứng minh rằng không thể có các số nguyên x, y thoả phương trình xy33−=1993 Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) ( AB b). Tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt đường thẳng BC tại E. Tính AE theo a, b. 15
- Nguyễn Tăng Vũ Đề thi vào lớp 10 3. Thi vào lớp chuyên toán trườngTrung Học Thực Hành ĐHSP TPHCM Năm học: 2005 – 2006 Vòng 1 Bài 1: Cho phương trình: (mxmxm+−+−=12) 2 20. a) Xác định m để phương trình có nghiệm kép và tính nghiệm kép này. b) Tìm m để phương trình có hai nghiệm phân biện x1, x2 thoả mãn: 22 xxxx1212+=++1. Bài 2: Tính A =+( 11230 −− 8 43)( 5 − 2) . Bài 3: ⎧11 ()()xy+ 23+= xy + 50 ⎪22 a) Giải hệ phương trình: ⎨ . 11 ⎪ ()()xy− 22−= xy − 32 ⎩⎪22 b) Giải phương trình: 36412x2 − xx+=− . 42 c) Giải phương trình: ( xx22+ 23240) ++−=( xx) . Bài 4: Cho tam giác đều ABC nội tiếp trong một đường tròn tâm O. Gọi I là điểm đối xứng của A qua O. Trên cạnh BA lấy điểm M và trên đường kéo dài của cạnh AC về phía C lấy điểm N sao cho: BM =CN. Hai đường thẳng MN và BC cắt nhai tại K. Chứng minh rằng: a) Hai tam giác IBM và ICN bằng nhau. b) Tứ giác AMIN nội tiếp trong một đường tròn. c) K là trung điểm của đoạn MN. Bài 5: 16
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Cho hình vuông ABCD. Trên đoạn AC lấy điểm M. Gọi E và F lần lượt là hình chiếu vuông góc của M lên BA và BC. a) So sánh diện tích tam giác DEF và diện tích tứ giác AEFC. b) Xác định vị trí M để diện tích tam giác DEF là nhỏ nhất. Vòng 2 Bài 1: a) Không dùng máy tính, hãy so sánh: x =+−−47 47 và y =+−−23 23. b) Giải phương trình: 121− xx−+=. Bài 2: Cho phương trình xmxm22−++−=24( ) 80. a) Tìm điều kiện của m để phương trình có nghiệm. b) Gọi x1, x2 là 2 nghiệm của phương trình. Hãy lập một hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m. 22 c) Với giá trị nào của m, biểu thức A = xx12−− x 1 x 2 đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. Bài 3: Chứng minh rằng với mọi số nguyên n, ta có giá trị cùa biểu thức E = n3 + 5n luôn là bội của 6. Bài 4: Cho tam giác ABC vuông tại A( AB < AC) . Đường tròn tâm O, đường kính AB và đường tròn tâm O’ đường kính AC cắt nhau tại A và D. a) Chứng minh rằng 3 điểm B, C, D thẳng hàng. b) Gọi M’ là điểm chính giữa của cung nhỏ CD. AM cắt BC tại E và cắt đường tròn tâm O tại N. Chứng minh tam giác ABE cân. c) Gọi K là trung điểm của đoạn thẳng MN. Chứng minh Ok vuông góc với O’K. d) Đặt BC = a, AB = b, AC = b. Điểm P di động trên nửa đường tròn đường kính BC không chứa A ( P khác B và C). Gọi Q, R, S lần lượt là hình chiếu của P trên các đường thẳng BC, CA, AB. Đặt PQ = x, 17
- Nguyễn Tăng Vũ Đề thi vào lớp 10 ⎛⎞abc PR = y, PS = z. Xác định vị trí của P sao cho biểu thức ⎜⎟++ ⎝⎠x yz đạt giá trị nhỏ nhất. Bài 5: 111 Cho a, b, là các số dương thoả mãn: + = . Tìm giá trị nhỏ nhất ab222 của biểu thức K = a + b. Năm học: 2006 – 2007 Vòng 1 Bài 1: a) Giải phương trình: xxx2 − 3120−−+=. b) Giả sử các phương trình: ax2 + bx+= c 0 và cy2 + dy+= a 0 ( a và c khác 0) có các nghiệm tương ứng là x1, x2 và y1, y2. Chứng minh 2222 rằng: xxyy1212+++≥4 . Bài 2: a) Với mỗi số tự nhiên k ≥ 1, chứng minh rằng: 111 =− . ()kkkkkk+++11 + 1 Áp dụng tính giá trị của biểu thức sau: 11 1 +++ . 21++ 12 32 23 1009999100 + b) Xác định m để hệ phương trình sau đây có nghiệm duy nhất. ⎧⎪ 1− x +=ym ⎨ ⎩⎪ 1− yxm+= Bài 3: ⎧+( xyxz)( +) =8 ⎪ Giải hệ phương trình: ⎨()()yxyz+ +=16 ⎪ ⎩()()zxzy+ +=32 Bài 4: 18
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Gọi AD là đường phân giác trong góc A của tam giác ABC ( D thuộc cạnh BC). Trên AD lấy hai điểm M, N sao cho: nABN= CBMn . BM cắt đường tròn ngoại tiếp tam giác ACM tại điểm thứ hai E và CN cắt đường tròn ngoại tiếp tam giác ABN tại điểm thứ hai F. a) Chứng minh rằng BECF là tứ giác nội tiếp. b) Áp dụng câu a) chứng minh ba điểm A, E, F thẳng hàng. c) Chứng minh rằng BCFn = n ACM . Từ đó suy ra: nACN= BCMn . Vòng 2 Bài 1: Giải và biện luận theo tham số m phương trình sau: xx+ 2006− 2006 = x +−2006mx −+ 2006 m Bài 2: ⎪⎧22x32= yy+ Giải hệ phương trình: ⎨ 32 ⎩⎪22yxx= + Bài 3: Tìm nghiệm nguyên của phương trình sau: xyx+ 6++= 2006 y 12033 0 Bài 4: Chứng minh rằng luôn tồn tại một số tữ nhiên N có không quá 2007 chữ số sao cho các chữ số của N chỉ là 9 hoặc 0 và N chia hết 10030. Bài 5: Cho hai điểm phân biệt A, B. Hai đường tròn thay đổi lần lượt tiếp xúc với đường thẳng AB tại A, B và tiếp xúc ngoài với nhau tại C. Tìm quĩ tích điểm C. Bài 6: Cho đường tròn tâm O và điểm A ở ngoài đường tròn. Một cát tuyến qua A cắt đường tròn tại B, C phân biệt. Các tiếp tuyến của đường tròn tại B và C cắt nhau tại D. Đường thẳng qua D vuông góc với OA cắt đường tròn tại E, F( E thuộc đoạn DF). Gọi M là trung điểm của đoạn BC. Chứng minh rằng: a) Ngũ giác AEMOF nội tiếp một đường tròn nào đó. 19
- Nguyễn Tăng Vũ Đề thi vào lớp 10 b) AE, AF là các tiếp tuyến của đường tròn (O). Năm học: 2007 – 2008 Bài 1: a) Giải phương trình: ()x − 35273xxx22+=−+ −. b) Cho phương trình(mxmxm+−−++=11301) 2 ( ) ( ). Tìm tất cả các số nguyên m sao cho phương trình (1) có hai nghiệm x1. x2 và 22 x12xxx+ 12 là một số nguyên. Bài 2: Cho a > b > c > 0. Chứng minh rằng: ab32++>++ bc 32 ca 3 2 ab 23 bc 23 ca 2 3. Bài 3: Tìm tất cả các số nguyên dương x, y, z sao cho ⎧+( xyz1)# ⎪ ⎨()xzy+1 # ⎪ ⎩()yz+1 # x Bài 4: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi (O’) là đường tròn bất kì tiếp xúc ngoài với (O) tại D trên cung BC không chứa A. Các đường thẳng AD, BD, CD cắt đường tròn (O’) lần lượt tại A’, B’, C’. AABBCC′′′ a) Chứng minh: ==. ADBDCD b) Chứng minh: ADBC = ACBD+ ABCD. c) Gọi A1, B1, C1 là các tiếp tuyến của (O’) vẽ từ A, B, C. Chứng minh rằng AABC111 =+ BBAC CCAB. Bài 5: Chứng minh rằng nếu ABCD là tứ giác lồi và không phải là tứ giác nội tiếp thì: ABCD +> ADBC ACBD. 20
- Nguyễn Tăng Vũ Đề thi vào lớp 10 4. Thi vào Phổ Thông Năng Khiếu – ĐHQG TPHCM Năm học: 2001 – 2002 Đề toán chung cho các khối C và D Bài 1: Cho parabol (P): yx=−2 mx +2 . a) Tìm m để đường thẳng (d): y = 2x – m tiếp xúc với (P). 2 b) Giả sử x1, x2 là hai nghiệm của phương trình: xmx− +=20 22 Tính A =+xx12 Bài 2: Giải các phương trình: a) xxx+=32( −+ 2) 31xx− b) 21=+. xx31− Bài 3: ⎪⎧22xy22− =− a) Giải hệ phương trình: . ⎨ 22 2 ⎩⎪xy− 328 x = x2 + 2 b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = . xx2 ++2 Bài 4: Tứ giác ABCD có AB = BD = DA = a và góc nACD = 60o . a) Tính góc ACB. b) Cho CB = CD. Tính theo a khoảng cách giữa các trực tâm H của tam giác CBD và trực tâm K của tam giác ABD. Bài 5: Một hồ nước được cung cấp bởi 3 vòi nước. Biết rằng nếu từng vòi nước cung cấp nước chi hổ thì vòi thức nhất sẽ làm đầy hồ nhan hơn vòi nước thứ hai là 5 giờ, vòi nước thừ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất là 4 giờ; còn nếu vòi nước thừ nhất và thứ hai cùng cung cấp nước cho hồ thì thời gian chúng làm đầy hồ bằng với thời gian vòi nước 21
- Nguyễn Tăng Vũ Đề thi vào lớp 10 thứ ba làm đầy hồ. Hỏi nếu cả ba vòi cùng cung cấp nước thì hồ sẽ đầy trong bao lâu? Đề toán chung cho các khối A và B Bài 1: a) Giải bất phương trình x +12>−x 1 ⎧ 17 x + = ⎪ y 2 b) Giải hệ phương trình: ⎨ 17 ⎪y + = ⎩⎪ x 3 Bài 2: Cho a, b, c là các số thực phân biệt sao cho các phương trình: xax2 ++=10 và xbxc2 ++=0 có nghiệm chung đồng thời các phương trình xxa2 ++=0 và xcxb2 ++=0 cũng có nghiệm chung. Hãy tìm tổng a + b + c. Bài 3: a) Trên các cạnh AB và CD của hình vuông ABCD lần lượt lấy các AB điểm M, N sao cho AM== CN . Gọi K là giao điểm của AN và 3 DM. Chứng minh rằng trực tâm của tam giác ADK nằm trên BC. b) Cho hình vuông ABCD với giao điểm của hai đường chéo là O. Một đường thẳng d vuông góc với mặt phẳng (ABCD) tại O. Lấy một điểm S trên d. Chứng minh rằng ACSBD⊥ ( ) và (SAC) ⊥ ( SBD) . Bài 4: Cho tứ giác lồi ABCD có AB vuông góc với CD và AB = 2. BC =13, CD = 8, DA = 5. a) Đường thẳng BA cắt DC tại E. Tính AE. b) Tính diện tích của tứ giác ABCD. Bài 5: Trong một giải cờ vua có 8 kì thủ tham gia, thi đấu vòng tròn một lượt, thằng được 1 điểm, hoà được 0.5 điểm, thua được 0 điểm. Biết rằng sau khi tất cả các trận đấu kết thúc thì cả 8 kì thủ nhận được số điểm khác 22
- Nguyễn Tăng Vũ Đề thi vào lớp 10 nhau và kì thủ xếp thứ hai có số điểm bằng tổng số điềm của 4 kì thủ xếp cuối cùng. Hỏi ván đấu giữa kì thủ xếp thứ tư và kì thủ xếp thứ 5 kết thúc với kết quả như thế nào. Đề thi vào chuyên toán Bài 1: a) Tìm số nguyên dương a nhỏ nhất sao cho a chia hết cho 6 và 2000a là số chính phương. b) Tìm số nguyên dương b nhỏ nhất sao cho (b – 1 ) không là bội của 9, b là bội của bốn nguyên tố liên tiếp và 2002b là số chính phương. Bài 2: 1 1 Cho x, y là số thực sao cho x + và y + đều là các số nguyên. y x 1 a) Chứng xy22+ là số nguyên. x22y 1 b) Tìm tất cả số nguyên dương n sao cho xynn+ là số nguyên. xnny Bài 3: a) Cho a, b là các số dương thoả ab = 1. Tìm giá trị nhỏ nhất của biểu 4 thức: Aab=++()1 () ab22 + + . ab+ 111 b) Cho m, n là các số nguyên thoả + = . Tìm giá trị lớn nhất của 23mn B = m.n Bài 4: Cho hai đường tròn C1( O1, R1) và C2(O2, R2) tiếp xúc ngoài với tại điểm n o A. Hai điểm B, C lần lượt di động trên C1, C2 sao cho góc BAC = 90 . a) Chứng minh rằng trung điểm M của BC luôn thuộc một đường cố định. b) Hạ AH vuông góc với BC, tìm tập hợp các điểm H. Chứng minh rằng 2RR độ dài AH không lớn hơn 12. RR12+ 23
- Nguyễn Tăng Vũ Đề thi vào lớp 10 c) Phát biểu và chứng minh các kết quả tương tự câu a) và câu b) trong trường hợp C1, C2 tiếp xúc trong tại A. Bài 5: Giải hệ phương trình : ⎪⎧ xxx++135135 ++ + = yy −+ −+ y − ⎨ 22 ⎩⎪xyx++ + y =80 Năm học: 2002 – 2003 Đề toán chung cho các khối C và D Bài 1: a) Tìm m để Parabol (P): ymx= 2 tiếp xúc với đường thẳng (dy) :22=− mxm + − 2 b) Tìm các giá trị của x để: xx2 + 3147+> x +. Bài 2: a) Viết đa thức sau dưới dạng bình phương hay lập phương của một đa thức khác: A =+xy42223 xy 33 + xy 24 ++ xy 24 233 xy 5 + y 6. b) Giải hệ phương trình: ⎧ xy+−+421 ⎪ +=4 ⎨ −+21yx + 4 ⎪ 2 ⎩xy−=7 Bài 3: xx++21 x − 1 Cho biểu thức: Q =−−3. . xx−−−+3256 xx a) Rút gọn Q. b) Tìm các giá trị x để Q < -1. Tìm các giác trị nguyên của x sao cho 2Q cũng là số nguyên. Bài 4: Cho hai hình vuông ABCD và A’B’C’D’ với AB // A’B’, BC < B’C’, các đường chéo AB, BD, A’C’, B’D’ cùng cắt nhau tại O. Gọi M là điểm di động trên các cạnh của ABCD, M’ là điểm di động trên các cạnh của A’B’C’D’. 24
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Khoảng cách lớn nhất giữa M và M’ là 14 2 cm , khoảng cách bé nhất giữa chúng là 2 cm. a) Tính diện tích hình vuông ABCD. b) Trên đường thẳng (d) vuông góc với mặt phẳng (ABCD) tại A, ta lấy điểm M sao cho AMcm= 82 . Tính diện tích tam giác OBM. Bài 5: Tìm số có hai chữ số, biết rằng tổng của hai chữ số đó là 9 và tổng lập phương của hai chữ số đó là 189. Đề toán chung cho các khối A và B Bài 1: Cho phương trình xxmm+−−+−=212 6110 a) Giải phương trình khi m = 2. b) Chứng minh rằng phương trình có nghiệm với mọi m. Bài 2: ⎧ 22 23 ⎪x + ymx++( 22 xy ++=− xyy) 1 m Cho hệ phương trình: ⎨ . ⎩⎪xy=−6 a) Giải hệ khi m = 0. b) Giải hệ phương trình khi m = 1. Bài 3: Gọi M, N lần lượt là trung điểm các cạnh AB, CD của hình chữ nhật ABCD. Biết rằng đường tròn ngoại tiếp hình chữ nhật có đường kính bằng 823+ và tồn tại điểm I thuộc MN sao cho DAIn = 45o và IDAn = 30o . a) Tính diện tích hình chữ nhật ABCD b) Gọi K, H lần lượt là trọng tâm của các tam giác AID và BIC. Tính diện tích tam giác NKH. Bài 4: Tam giác ABC có góc ABC bằng 30o và góc ACB bằng 150. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M, N, P, I lần lượt là trung điểm của BC, CA, AB, OC. a) Tính góc PON. Chứng minh rằng A, M, I thẳng hàng. 25
- Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Chứng minh P là trực tâm của tam giác OMN. Bài 5: a) Tìm tất cả các số thực a, b, sao cho 25xa+ =+∀∈ bx x \ b) Cho a, b, c , d, e, f là các số thực thoả điểu kiện: ax+= b cx += d ex + f với mọi số thực x. Biết a, c, e khác không. Chứng minh rằng ad = bc. Đề thi vào chuyên toán Bài 1: Cho phương trình: x −+=xm1 (1) trong đó m là tham số. a) Giải phương trình khi m = 1 b) Tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm phân biệt. Bài 2: Cho x, y, z là các số nguyên thoả mãn: x222+ yz= . a) Chứng minh rằng trong hai số x, y có ít nhất một số chia hết cho 3. b) Chứng minh rằng tích xy chia hết cho 12. Bài 3: Cho đường tròn (C ) đường kính BC = 2R và điểm A thay đổi trên (C ) ( A không trùng B và C). Đường phân giác trong của góc A của tam giác ABC cắt đường tròn ( C) tại điểm K ( khác A). Hạ AH vuông góc với BC. a) Đặt AH = x. Tính diện tích S của tam giác AHK theo R và x. Tìm x sao cho S đạt giá trị lớn nhất. b) Chứng minh rằng khi A thay đổi, tổng AHHK22+ a luôn luôn là một đại lượng không đổi. AN 3 c) Tính góc B của tam giác ABC biết rằng = . HK 5 Bài 4: 111 Cho các số thực a, b, c thoả mãn điều kiện abc+ =+ =+ . bca a) Cho a = 1, hãy tìm b, c. 26
- Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Chứng minh rằng nếu a, b, c đôi một khác nhau thì abc222= 1. c) Chứng minh rằng nếu a, b, c đều dương thì a = b = c. Bài 5: Trong một giải bóng đá có N đội tham gia thi đấu vòng tròn một lượt ( hai đội bất kì sẽ gặp nhau một lần). Sau mỗi trận đấu, đội thắng được 3 điểm, đội thua không được điểm nào, nếu trận đấu kết thúc với tỉ số hoà thì mỗi đội được 1 điểm. Các đội được xếp hạng dựa trên tổng số điểm. Trong trường hợp một số đội có tổng điểm bằng nhau thì các đội này sẽ được xếp hạng theo chỉ số phụ. Kết thúc giải, người ta nhận thấy rằng không có trận nào kết thúc với tỉ số hoà; các đội xếp nhất nhì ba có tổng điểm lần lượt là 15, 12, 12 và tất cả các đội xếp tiếp theo có tổng điểm đội một khác nhau. a) Chứng minh rằng N ≥ 7 . b) Tìm N và tổng điểm của mỗi đội tham gia giải. Năm học: 2003 – 2004 Đề toán chung cho các khối C và D Bài 1: a) Vẽ Parabol yx= 2 2 . Tìm các giá trị cùa x để 235xx2 − +>−+ x 17. b) Cho f ( xm) =−( 2384913238) x −( mm 2 −−) x 2 +−+−( m) m. Tìm m < 0 để f (1) = 0 . Lúc đó tìm g(x) để f ( xxgx) = ( −1.) ( ) và tìm các nghiệm còn lại, nếu có của phương trình fx( ) = 0. Bài 2: a) Giải phương trình: 25x + =+−xx2 31. b) Rút gọn biểu thức: 23+− 23 + 223++ 223 −− Bài 3: ⎪⎧xy− =−9 a) Giải hệ phương trình: với 3 x, 3 y là các số nguyên. ⎨ 3 ⎩⎪ x + 3 y = 1 27
- Nguyễn Tăng Vũ Đề thi vào lớp 10 b) Tìm k để phương trình kx2 − (12−−+= 5 k) x 4( 1 k ) 0 có tổng bình phương các nghiệm là 13 Bài 4: Cho dây cung BC trên đường tròn tâm O, điểm A chuyển động trên cung lớn BC. Hai đường cao AE, BF của tam giác ABC cắt nhau tại H. a) Chứng minh CE.CB = CF. CA b) AE kéo dài cắt đường tròn tại H’. Chứng minh H và H’ đối xứng nhau qua BC, xác định quĩ tích của H. Bài 5: Có 3 đội xây dựng cùng làm chung một công việc. Làm chung được 4 ngày thì đội III được điều động làm việc khác, 2 đội còn lại cùng làm thên 12 ngày nữa thì hoàn thành công việc. Biết rằng năng suất của đội I cao hơn năng suất của đội II; năng suất của đội 3 là trung bình cộng của năng suất đội I và năng suất đội II; và nếu mỗi đội làm một mình một phần 3 công việc thì phải mất tất cả 37 ngày mới xong. Hỏi nếu mỗi đội làm một mình thì bao nhiêu ngày mới xong công việc trên. Đề toán chung cho các khối A và B Bài 1: Cho phương trình: mx22+++−=23301 mx m m ( ) . a) Định m để phương trình vô nghiệm. b) Định m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả xx12−=1. Bài 2: a) Giải phương trình xx( + 253) +−=+ xx( ) xx( ) . ⎧ 2222 ⎪( xyxy+−=)( ) 144 b) Giải hệ phương trình: ⎨ 22 22 ⎩⎪ x +−yxyy −= Bài 3: Cho tam giác ABC có BACn = 45o .Gọi M và N lần lượt là chần đường cao kẻ từ B và C của tam giác ABC. 28
- Nguyễn Tăng Vũ Đề thi vào lớp 10 MN a) Tính tỉ số . BC b) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng OA⊥ MN Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều; mặt bên SCD là tam giác vuông cân tại S. Gọi I, J lần lượt là trung điểm của AB và CD. a) Tính diện tích tamg giác SIJ theo a. b) Họi H là chân đường cao kẻ từ S của tam giác SIJ. Chứng minh SH vuông góc với AC. Bài 5: Lớp 9A có 28 học sinh đăng kí dự thi vào các lớp chuyên Toán, Lý, Hoá của trường Phổ Thông Năng Khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hoá; Có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Tý, Hoá; Số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ thi vào lớp Toán; Có 6 học sinh chọn thi vào lớp Toán và Hoá; Số học sinh chọn thi vào lớp Lý và lớp Hoá gấp 5 lần số học sinh chọn thi vào cả 3 lớp Toán, Lý, Hoá. Hỏi số học sinh thi vào từng lớp là bao nhiêu. Đề thi vào chuyên toán Bài 1: a) Chứng minh rằng phương trình: (abx222−−−+−=) 20( abxab 33) 44 có nghiệm với mọi a, b. ⎪⎧xyxy+ +=5 b) Giải hệ phương trình ⎨ 33. ⎩⎪()()xy+1135++ = Bài 2: a) Với mỗi số nguyên dương n, đặt: 21nn++ 1 21 nn ++ 1 abnn=−+=++221;221. 29
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Chứng minh rằng với mọi n có abnn chia hết cho 5 và abnn+ không chia hết cho 5. b) Tìm tất cả các bộ ba số nguyên dương đôi một khác nhau sao cho tích của chúng bằng tổng của chúng. Bài 3: Cho tam giác ABC vuông tại A, có đường cao AA1. Hạ A1H vuông góc AB, A1K vuông góc AC. Đặt A1B = x, A1C = y. a) Gọi r và r’ là bán kính đường tròn nội tiếp tam giác ABC, và tam giác r′ AHK tương ứng. Hãy tính tỉ số theo x và y. Suy ra giá trị lớn nhất r của tỉ số đó b) Chứng minh rằng tứ giác BHKC nội tiếp trong một đường tròn. Tính bán kính của đường tròn đó theo x và y. Bài 4: a) Cho đường tròn (C ) tâm O và một điểm A khác O nằm trong đường tròn. Một đường thẳng thay đổi qua A nhưng không đi qua O cắt (C ) tại M, N. Chứng minh rằng đường tròn ngoại tiếp tam giác OMN luôn đi qua một điểm cố định khác O. b) Cho đường tròn (C ) tâm O và một đường thẳng (d) nằm ngoài đường tròn. I là điểm di động trên (d). Đường tròn đường kính IO cắt (C ) tại M, N. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định. Bài 5: a) Cho một mảnh vuông 4 x 4. Trên các ô của hình vuông này, ban đầu người ta ghi 9 số 1 và 7 số 0 một cách tuỳ ý( mỗi ô một số). Với mỗi phép biến đổi bảng, cho phép chọn một hàng hoặc một cột bất kì và trên hàng hoặc cột được chọn đổi đồng thời các số 0 thành 1, các số 1 thành 0. Chứng minh rằng sau một số hữu hạn các phép biến đổi như vậy, ta không thể đưa bảng ban đầu về toàn các số 0. b) Ở vương quốc “ Sắc màu kỳ ảo” có 45 hiệp sĩ: 13 hiệp sĩ tóc đỏ, 15 hiệp sĩ tóc vàng và 17 hiệp sĩ tóc xanh. Khi hai hiệp sĩ gặp nhau thì màu tóc của họ sẽ đổi sang màu tóc thứ ba ( ví dụ nếu hiệp sĩ tóc xanh gặp hiệp sĩ tóc vàng thì màu tóc của họ sẽ thành màu đỏ). Hỏi 30
- Nguyễn Tăng Vũ Đề thi vào lớp 10 sau một hữu hạn lần gặp nhau thì ở “Sắc màu kì ảo” tất cả các hiệp sĩ có cùng màu tóc được không? Năm học: 2004 – 2005 Đề toán chung cho các khối C và D Bài 1: a) Tìm m để Parabol (P): yx= 2 +−+22 mxm tiếp xúc với đường thẳng (d): yxm =+ . b) Giả sử phương trình mx22+ (21 m++−=) x m 10 có hai nghiệm phân biệt x1, x2 . Hãy tính tổng S và tích P của các nghiệm. Tìm hệ thức giữa S và P độc lập đối với m. Bài 2: ⎧xy+=−1 a) Giải hệ phương trình: ⎨ 33 ⎩xy+ =−21 b) Giải phương trình: 20− 3−=− 2xx 2 3 Bài 3: a) Tìm k để đa thức f ( xx) = 42−++22 x 51 xk 2 chia hết cho đa thức gx( ) =−+ x2 32 x ( Nghĩa là có đa thức h(x) sao cho f ( xgxhx) = ( ). ( ) ). Giải phương trình fx( ) = 0 với k vừa tìm được. 32aabbaabb2222− −−+ 34 b) Rút gọn biểu thức: R = : . 232a2222+ abba−+− abb Bài 4: Cho tam giác ABC vuông tại A và góc ABC bằng 75o. Đường trung trực của BC cắt các đường thẳng BC, AC, AB lần lượt tại M, N, P. AN a) Tính . NC b) Gọi I là giao điểm của các đường thẳng BN và PC. So sánh MA và MI. 31
- Nguyễn Tăng Vũ Đề thi vào lớp 10 c) Lấy điểm Q trên đường thằng vuông góc với mặt phẳng (ABC) tại B sao cho BQ = BI, hạn QJ vuông góc xuống PC, J nằm nằm trên PC. QJ Tính AB Bài 5: Hai thành phố A và B cách nhau 48km, gió thổi từ A đến B với vận tốc không đổi 6km/h. Lúc 8 giờ, một người đi mô tô từ A đến B, nghỉ ngơi 30 phút rồi trở về A, anh về đến A lúc 10 giờ 50 phút. Vận tốc mô tô được cộng thêm hoặc trừ bởi vận tốc gió, tuý theo mô tô chạy xuôi hay ngược gió. Hãy tính vận tốc riêng của mô tô ( tốc độ mô tô khi vận tốt gió bằng 0) Đề toán chung cho các khối A và B Bài 1: a) Giải phương trình: xx− 432−=. b) Định m để phương trình xmxm2 − ( ++=120) có hai nghiệm phân biệt x1, x2 sao cho x1, x2 là độ dài hai cạnh của góc vuông của một tam giác vuông có cạnh huyền bằng 5. Bài 2: Cho a, b, c là các số thực dương thoả mãn điều kiện: a222++=− b c( ab)222 +−( bc) +−( ca) . a) tính a + b + c biết rằng ab+ ac+= bc 9 . b) Chứng minh rằng nếu cacb≥≥, thì cab≥+. Bài 3 Cùng một thời điểm , một chiếc ô tô XA xuất phát từ thành phố A về thành phố B và một chiết xe khác XB xuất phát từ thành phố B về thành phố A. Chúng chuyển động với vận tốt riêng không đổi và gặp nhau lần thứ nhất tại một điểm cách A 20 km. Cả hai chiếc xe, sau khi đến B và A tương ứng, lập tức quay trở lại và chúng gặp nhau lần thứ hai tại một điểm C. Biết thời gian xe XB đi từ C đến B là 10 phút và thời gian giữa hai lần gặp nhau là 1 giờ. Tìm vận tốt của từng chiếc ô tô. Bài 4: 32
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Gọi I, O lần lượt là tâm đường tròn nội tiếp và đường tròn ngoại tiếp (C) của tam giác nhọn ABC. Tia AI cắt đường tròn (C ) tại K ( K khác A) và J là điểm đối xứng của I và O qua BC. a) Chứng minh rằng tam giác IBJ vuông. b) Tính góc BAC nếu Q thuộc ( C). c) Chứng minh rằng nếu Q thuộc (C ) thì P cũng thuộc (C ). Bài 5: Chứng minh rằng từ 8 số nguyên dương tuỳ ý không lớn hơn 20, luôn chọn được 3 số x, y, z là độ dài 3 cạnh của một tam giác. Đề thi vào chuyên toán Bài 1: ⎪⎧xy+ +=51 a) Giải hệ phương trình: ⎨ ⎩⎪yx+ +=51 b) Cho x, y là các số thực thoả mãn điều kiện xy<1,< 1 . Chứng x + y minh rằng: xy+≥ . 1+ xy c) Tìm tất cả các số nguyên m ≥ 0 sao cho phương trình: xm2 −−( 10)2 xm += có các nghiệm đều nguyên. Bài 2: a) Tìm tất cả các số nguyên dương n sao cho đa thức: xx31nn+ ++ 2 1 chia hết cho đa thức x2 + x +1. b) Tìm số dư trong phép chia A =++3338 6 2004 cho 91. Bài 3: Cho tam giác đều ABC và một điểm P nằm trong tam giác. Hạ PA1, PB1, PC1 vuông góc với BC, CA, AB tương ứng. Tìm tập hợp các điểm P sao cho tam giác A1B1C1 là tam giác cân. Bài 4: Cho tam giác nhọn ABC nội tiếp trong đường tròn (C ) và M là một điểm thay đổi trên cung nhỏ BC. N là điểm đối xứng của M qua trung điểm I của AB. 33
- Nguyễn Tăng Vũ Đề thi vào lớp 10 a) Chứng minh trực tâm K của tam giác NAB thuộc một đường tròn cố định. b) Giả sử NK cắt AB tại D, hạ NE vuông góc với BC. Gọi H là trực tâm của tam giác ABC. Chứng minh rằng DE đi qua trung điểm J của HK. Bài 5: a) Trong một giải bóng đá có k đội tham gia, thi đấu vòng tròn một lượt ( 2 đội bất kì đấu với nhau một trận). Đội bóng nào thắng được 3 điểm, hoà được 1 điểm, thua không có điểm nào. Kết thúc giải, người ta nhận thấy rằng số trận thắng – thua gấp đôi số trận hoà và tổng số điểm của các đội là 176. Hãy tìm k. b) Tìm tất cả các số nguyên dương A có hai chữ số sao cho số A chỉ thoã mãn đúng hai trong 4 tính chất sau: i) A là bội số của 5. ii) A là bội số của 21. iii) A + 7 là số chính phương iv) A – 20 là số chính phương. Năm học 2005 – 2006 Đề toán chung cho các khối C và D Bài 1: a) Gọi (d) là đường thẳng qua hai điểm A(0; -1) và M(1; -m -1). Tìm m để Parabol (P): ymxmx=+−2 4 tiếp xúc với đường thẳng (d). 2 b) Giả sử x1, x2 là hai nghiệm của phương trình: mx+ 230 mx −=. Tính 22 A =+xx12 theo m. Bài 2: ⎪⎧34xy22−= 0,11 a) Với điều kiện xy < 0, giải hệ phương trình: . ⎨ 22 ⎩⎪23xy−= 0,22 35+− 35 b) Rút gọn biểu thức: R =+. 235++ 235 −− Bài 3: 34
- Nguyễn Tăng Vũ Đề thi vào lớp 10 15 a) Giải phương trình x22−++44xxxx ++= 69 . 2 b) Tìm 7 số nguyên liên tiếp sao cho tổng bình phương bốn số đầu bằng tổng bình phương của ba số sau. Bài 4: Cho tam giác ABC có nACB=+=45o ,n ACB BACn 2n ABC . Đường trung trực của AB cắt BC tại M. a) Tính MnAC . b) Gọi I là tâm đường tròn ngoại tiếp tam giác AMC. Chứng minh rằng tức giác ABCI là tứ giác nội tiếp. Bài 5: Một cuộc đua thuyền được tổ chức trên tuyến đường hình tam giác đều ABC ( chạy từ A đến B, từ B đến C và từ C về A). Chiếc thuyền “Bảy cây sứ trắng” tham dự cuộc đua và được ghi nhận các thông tin như sau: 2 thuyển chạy từ đoạn đường AB cho đến đích mất 3 giờ 15 phút; thuyền 3 vượt đoạn BC nhanh hơn khi vượt đoạn CA 25 phút; thuyền chạy từ A đến 1 đoạn CA hết 2h 40 phút. Giả sử rằng khi di chuyển trên mỗi cạnh tốc độ 4 của thuyền là không đổi và thuyền đi rất thẳng; ngoài ra, thời gia để thuyến đổi hướng là không đáng kể. Tính thời gian thuyền vượt toàn bộ quãng đường. Đề toán chung cho các khối A và B Bài 1: 2 Cho phương trình xx( +12230) ⎣⎦⎡⎤ mx++++=( m) x m . a) Giải phương trình khi m = 1. b) Chứng minh rằng phương trình trên không thể có 3 nghiệm phân biệt. Bài 2: 35
- Nguyễn Tăng Vũ Đề thi vào lớp 10 ⎪⎧xy−=5 a) Giải hệ phương trình ⎨ ⎩⎪ 21xy+ −−= 22 ⎧xyz= ⎪ b) Giải hệ phương trình ⎨yz= 4 x . ⎪ ⎩zx= 9 y Bài 3: a) Giải phương trình xxxx+ 63120+−−+−−=. b) Cho các số thực a, b, c thoả mãn điều kiện a + b + c = 0. Chứng minh rằng: ab++≤230 bc ca . Bài 4: Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Gọi M là chân đường cao kẻ từ A của tam giác ABC. Đường thẳng AM cắt đường tròn (O) tại I ( I khác A). Gọi H là điểm đối xứng của I qua BC. a) Chứng minh rằng H là trực tâm của tam giác ABC. b) Gọi N là giao điểm của BH và AC. P là điểm thuộc cạnh AB sao cho: PMBn = NMCn . Chứng minh rằng C, H, P thẳng hàng. c) Giả sử BH = 2HN và AH = HI. Chứng minh rằng tam giác ABC đều. Bài 5: Trong một kì thi học sinh giỏi của trường , nếu sắp xếp mỗi phòng thi 22 học sinh thì còn chứa một em, còn nếu giảm một phòng thi thì số học sinh được chia đều cho mỗi phòng. Hỏi có bao nhiêu học sinh tham dự kì thi, biết rằng mổi phòng không thể chứa quá 40 học sinh. Đề thi vào chuyên toán Bài 1: a) Cho ab,0,0>≠ c . Chứng minh rằng: 111 ++=⇔0 ab ++ ac ++ bc +. abc ⎧ 11 +=1 ⎪ 22 b) Giải hệ phương trình : ⎨ xy ⎪ 22 ⎩ xyxy−11+−=+ 2 36
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 2: a) Cho p ≥ 5 là số nguyên tố sao cho 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6 và 2p2 + 1 không phải là số nguyên tố. b) Tìm tổng các số nguyên dương từ 1 đến 1000 mà trong đó cách viết thập phân của chúng không chứa chữ số 4 và chữ số 5. c) Cho tam thức bậc hai P( x) = ax2 ++ bx c( a ≠0) thoả mãn điều kiện: Px( 22−=22) P( x) −. Chứng minh rằng P()xPx = (− ) với mọi x. Bài 3: Cho tam giác nhọn ABC. Điểm D di động trên cạnh BC. Gọi O1, O2 lần lượt là tâm đường tròn ngoại tiếp các tam giác ABD và ACD. a) Chứng minh rằng đường tròn ngoại tiếp tam giác AO1O2 luôn đi qua một điểm cố định khác A. b) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và I là tâm đường tròn ngoại tiếp tam giác AO1O2. Hãy xác định vị trí của điểm D trên BC sao cho IO là nhỏ nhất. Bài 4: a) Cho hình vuông ABCD có cạnh bằng 1. M là một điểm bất kì nằm trong hình vuông. Chứng minh rằng MA22+ MB++≥ MC 2 MD 22 . b) Cho x, y, z, t là các số thực bất kì thuộc đoạn [ 0; 1]. Chứng minh rằng: xyyzzttx(11112−+) ( −+) ( −+−≤) ( ) . Bài 5: Xét 81 chữ số, trong đó có 9 chữ số 1, 9 chữ số 2, , 9 chữ số 9. Hỏi có thể xếp được hay không tất cả các chữ số này thành một dãy, sao cho với mọi k = 1, 2, , 9 trong mỗi khoảng giữa hai chữ số k liên tiếp có đúng k chữ số. Năm học: 2006 – 2007 Đề toán chung cho các khối C và D Bài 1: 37
- Nguyễn Tăng Vũ Đề thi vào lớp 10 a) Với điều kiện x > 0, y > 0, giải hệ phương trình: ⎪⎧42xy22−=− . ⎨ 22 2 ⎩⎪232,25xy+= x b) Giải phương trình bằng cách đặt ẩn phụ: xxx2 + 21140( ++) − =. Bài 2: Xét biểu thức: xx−+13 x + 5 P =−− . xxxx+−−−12 2 Rút gọn P. Tìm các giá trị của x để P > -1. Tìm các giá trị nguyên của x sao cho P cũng là số nguyên. Bài 3: 5 Cho một phân số. Nếu thêm 5 vào tử và mẫu thì phân số tăng . Nếu 42 1 giảm 1 ở tử và mẫu thì phân số giảm . Tìm phân số đó. 21 Bài 4: Cho tam giác ABC nhọn, có H là trực tâm, các đường thẳng BH và CH lần lượt cắt AC và AB tại M và N, NHMn = 120o , MN a) Chứng minh nAMN= n ABC . Tính . BC AH b) Tính . BC Bài 5: Trong một cuộc đua mô tô có 3 xe khởi hành cùng một lúc. Xe thứ nhì trong mỗi giờ chạy chậm hơn xe thứ nhất 10km và nhanh hơn xe thứ ba 5km, đến đích trễ hơn xe thứ nhất 10 phút, sớm hơn xe thứ ba 6 phút. Tính vận tốc mỗi xe và chiều dài quãng đường. 38
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Đề toán chung cho các khối A và B Bài 1 Cho phương trình: 3104701xxm2 −+−=( ) a) Xác định m để phương trình có một nghiệm bằng 3 và tìm các nghiệm còn lại của phương trình. b) Tìm tấc cả các giá trị của m để phương trình (1) có nghiệm. Bài 2 a) Giải phương trình xx+ 4261−−= ⎪⎧xy22+ 26= b) Giải hệ phương trình : ⎨ 2 ⎩⎪23xy− y = Bài 3 a) Cho a, b, c thoả abc≠++=0và ab bc ca 0. (abbcca+++)( )( ) Tính P = . abc b) Cho a, b, c thoả (abbcca+++≠)( )( ) 0 và abcabc222 222 ++=++. Chứng minh rằng a = b= c. ab+++ bc ca bc +++ ca ab Bài 4 Cho tứ giác ABCD nội tiếp đường trình tâm O, có ACBD⊥ và AC cắt BD tại I. Biết rằng IA = 6cm, IB = 8cm, ID = 3cm. a) Chứng minh rằng tam giác ABC cân. b) Gọi M, N lần lượt là trung điểm của AB và CD. Tính độ dài đoạn MN. c) Gọi P là giao điểm của IO và MN. Tính độ dài đoạn MN. Bài 5 Để tặng thưởng cho các học sinh đạt thành tích cao trong một kì thi Olympic toán dành cho học sinh lớp 9, ban tổ chức đã trao 30 phần thưởng cho các học sinh với tổng giải thưởng là 2.700.000 đồng bao gồm: mỗi học sinh đạt giải nhất được 150.000 đồng; mỗi học sinh đạt giải nhì được 130.000 đồng; mỗi học sinh đạt giải ba được thưởng 100.000 đồng; mỗi học sinh đạt giải khuyến khích được thưởng 10.00 đồng. Biết rằng có 39
- Nguyễn Tăng Vũ Đề thi vào lớp 10 10 giải ba và ít nhất một giải nhì được trao. Hỏi ban tổ chức trao bao nhiêu giải nhất, bao nhiêu giải nhì và khuyến khích. Đề thi vào chuyên toán Bài 1: ⎪⎧21xxy2 + = a) Giải hệ phương trình: ⎨ 2 ⎩⎪21yxy+ = b) Giải bất phương trình: 35xx− 2 ≤− 52 x c) Cho x, y là các số thực thoả mãn điều kiện x + y = 2. Chứng minh rằng xy( x22+≤ y ) 2 . Bài 2: Cho phương trình (mx+−32) 22( mmxm + 3) ++= 3 1201( ) với m là tham số. a) Tìm số nguyên m nhỏ nhất sao cho phương trình (1) có hai nghiệm phân biệt. b) Ký hiệu x1, x2 là hai nghiệm của (1). Tìm số nguyên m lớn nhất sao 22 cho x12+ x là một số nguyên. Bài 3: Cho tam giác đều ABC. P là một điểm nằm trong tam giác. Gọi x, y, z lần lượt là khoảng cách từ P đến BC, AC và AB. a) Biết rằng x =1, y = 2, z = 3. Hãy tính diện tích tam giác ABC. b) Tìm quĩ tích những điểm P trong tam giác sao cho x + y = z Từ đó suy ra tập hợp những điểm P trong tam giác sao cho x, y, z lập thành 3 cạnh của một tam giác. Bài 4: Cho đường tròn (C )tâm O, AB là một dây cung của ( C). Một đường thẳng thay đổi qua A cắt đường tròn (C1) tâm O bán kính OI tại P và Q. Chứng minh rằng tích AP.Q không đổi và đường tròn ngoại tiếp tam giác BPQ luôn đi qua một điểm cố định khác B. 40
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 5: a) Trong một giải bóng đá, có 4 đội thi đấu vòng tròn một lượt( trong một trận, đội thắng được 1 điểm, đội thua 0 điểm, và đội hoà được 1 điểm). Khi kết thúc giải, người ta thấy có 3 đội đạt được tổng số điểm lần lượt là 6 điểm, 5 điểm và 1 điểm. Hãy cho biết đội còn lại đượt bao nhiêu điểm và giải thích tại sao?. b) Cho 13 số thực thoả mãn điều kiện là tổng của 6 số bất kì trong chúng nhỏ hơn tổng của 7 số còn lại. Chứng minh rằng tất cả các số đều dương. Năm học: 2007 – 2008 Đề toán chung cho các khối A và B Bài 1: xxmmm2 −+22( +− 13) Cho phương trình = 0 x −1 a) Tìm m để x = -1 là nghiệm của phương trình b) Tìm m để phương trình vô nghiệm Bài 2: a) Giải bất phương trình ( xx+ 3121)( −−) x −<− x2 7 ⎧⎪xy+ 2321 yx=− x x b) Giải hệ phương trình ⎨ ⎩⎪yx+ 2321 xy=− y y Bài 3: a) Cho a, b, là hai số thoả mãn điều kiện aabbaaabbab2222−++=−+−+=32 2 570 Chứng tỏ rằng ab−+=12 a 15 b 0 ( xxxxxx22+−42)( + + 1)( ++ 42) − 2 + 1 b) Cho A = xx() x−1 Bài 4: 41
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Cho tam giác ABC nhọn có trực tâm H và BACn = 600 . Gọi M, N, P lần lượt là chân đường cao kẻ từ A, B, C của tam giác ABC và I là trung điểm BC. a) Chứng minh rằng tam giác INP đều. b) Gọi E và K lần lượt là trung điểm của PB và NC. Chứng minh các điểm I, M, E, K cùng thuộc một đường tròn. c) Giả sử IA là phân giác của góc NnIP . Hãy tính số đo góc BCPn Bài 5: Một công ti may giao cho tổ máy A may 16.800 sản phẩm, tổ B may 16.500 sản phẩm và bắt đầu thực hiện công việc cùng lúc. Nếu sau 6 ngày, tổ A được hỗ trợ thêm 10 công nhân may thì họ hoàn thành công việc cùng lúc với tổ B. Nếu tổ A được hỗ trợ thêm 10 công nhân ngay từ đầu thì sẽ hoàn thành công việc sớm hơn tổ B 1 ngày. Hãy xác định số công nhân ban đầu của mỗi tổ, mỗi công nhân may mỗi ngày được 20 sản phẩm. Đề thi vào chuyên toán Bài 1: ⎧⎪x2 + 66yx= a) Giải hệ phương trình: . ⎨ 2 ⎩⎪yxy+=92 b) Cho ab=+11 6 2 , =− 11 6 2 . Chứng minh rằng a, b, là hai nghiệm của một phương trình bậc 2 với hệ số nguyên. c) Cho cd=+=−3363 10, 63 10. Chứng tỏ rằng c2, d2 là hai nghiệm của một phương trình bậc 2 với hệ số nguyên. Bài 2: Cho tam giác ABC nội tiếp đường tròn (C). P là một điểm trên cung BC không chứa điểm A. Hạ AM, AN lần lượt vuông góc với PB, PC. a) Chứng minh rằng MN luôn đi qua một điểm cố định khi P thay đổi. b) Xác định vị trí của P sao cho biểu thức AM.PB + AN.PC đạt giá trị lớn nhất. 42
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Bài 3: a) Cho a, b, c, d là các số thực dương thoả mãn: ab = cd =1. Chứng minh bất đẳng thức: (abcd+ )( ++≥) 42( abcd +++) . b) Cho a, b, c, d là các số dương thoả mãn điều kiện abcd = 1. Chứng minh rằng bất đẳng thức: (ac+ bd)( ad+≥++ bc) ( a b)( c d ) . Bài 4: Cho hình thang ABCD có đáy AB và CD. Đường tròn đường kính CD đi qua trung điểm các cạnh bên AD, BC tiếp xúc với AB. Hãy tìm số đo các góc của hình thang. Bài 5: a) Cho a, b, c là các số thực dương phân biệt có tổng bằng 3. Chứng minh rằng trong 3 phương trình xaxbxbxcxcxa222−+=−+=−+=20,20,20 có ít nhất một phương trình có hai nghiệm phân biệt và ít nhất một phương trình vô nghiệm. b) Cho S là một tập hợp gồm 3 số tự nhiên có tính chất: tổng hai phần tử tuỳ ý của S là một số chính phương( ví dụ S = {5, 20, 44}). Chứng minh rằng trong tập S có không quá một số lẻ. 43
- Nguyễn Tăng Vũ Đề thi vào lớp 10 5. Tuyển sinh vào lớp 10 – TP.HCM Năm học 2005 – 2006 Đề thi chung vào các trường chuyên Bài 1: Cho phương trình: 4232xmxmm22+ ( −+−+=) 320 b) Chứng tỏ phương trình trên luôn có nghiệm với mọi giá trị của tham số m c) Tìm m để tích 2 nghiệm của phương trình đạt giá trị nhỏ nhất. Bài 2: Giải các phương trình và hệ phương trình sau: ⎪⎧x22+=yxy2( +) c) ⎨ ⎩⎪xy+=6 25x2 d) x2 +=11 ()x + 5 2 Bài 3: a) Cho a > c, b > c, c > 0. Chứng minh ca( −+ c) cb( −≤ c) ab 2 ab b) Cho a, b > 0. Chứng minh ≤ ab ab+ Bài 4: Tìm số chính phương có 4 chữ số biết rằng khi tăng thêm mỗi chứ số một đơn vị thì số mới tạo thành cũng là một số chính phương Bài 5 Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O; R), góc C bằng 45o. Đường tròn đường kính AB cắt các cạnh AC và BC lần lượt tại M và N. a) Chứng minh MN vuông góc với OC AB b) Chứng minh MN = 2 Bài 6: Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O; R). Điểm M lưu động trên cung nhỏ BC. Từ M kẻ các đường thẳng MH, MK lần lượt vuông góc với AB, AC( H thuộc AB, K thuộc AC). a) Chứng minh hai tam giác MBC và MHK đồng dạng b) Tìm vị trí của M để độ dài đoạn HK đạt giá trị lớn nhất. 44
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Đề thi vào lớp chuyên toán Bài 1: a) Định m để hai phương trình xxm2 + +=0 và xmx2 + +=10 có ít nhất một nghiệm chung. d) Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng phương trình bx22++−( b 2 c 2 a 2) x += c 2 0 vô nghiệm. Bài 2: Giải phương trình và hệ phương trình ⎧⎪x33−=yxy3( −) a) ⎨ ⎩⎪xy+=1 213xx b) +=6 3523xx22−+ xx ++ 2 Bài 3: a) Chứng minh rằng 22(ab44+≥++) ababab 33 22 với mọi a, b b) Chứng minh ab22−+2 abba −> 2 với mọi a > b > 0. Bài 4: Tìm các số nguyên dương có hai chữ số, biết số đó là bội của tích hai chữ số của chính số đó. Bài 5: Cho hình bình hành ABCD có góc A nhọn, AB < AD. Tia phân giác của góc BADn cắt BC tại M và cắt DC tại N. Gọi K là tâm của đường tròn ngoại tiếp tam giác MCN. a) Chứng minh rằng DN = BC và CK⊥ MN b) Chứng minh rằng BKCD là một tứ giác nội tiếp. Bài 6: Cho tam giác ABC có llA = 2B . Chứng minh rằng BC22=+ AC AB. AC 45
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Năm học: 2006 – 2007 Đề thi chung vào các trường chuyên Bài 1: Giải các phương trình và hệ phương trình sau: ⎧321xy+= a) ⎨ ⎩53xy+=− 4 b) 22330xx2 +−= c) 9810xx42+−= Bài 2: Thu gọn các biểu thức sau: 15− 12 1 a) A =−. 52−− 2 3 ⎛⎞aa−+22⎛⎞ 4 b) ⎜⎟−−.⎜⎟a với aa>≠0, 4 ⎝⎠aa+−22⎝⎠ a Bài 3: Cho mảnh đất hình chữ nhật có diện tích 360m2. Nếu tăng chiều rộng 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi. Tính chu vi của mảnh đất ban đầu. Bài 4: a) Viết phương trình đường thẳng (d) song song với đường thẳng y = 3x + 1 và cắt trục tung tai điểm có tung độ bằng 4. x2 b) Vẽ đồ thị hàm số y = 3x + 4 và y = − trên cùng một hệ trục toạ 2 độ. Tìm toạ độ các giao điểm của hai đồ thị ấy bằng phép tính. Bài 5: Cho tam giác ABC có 3 góc nhọn và AB < AC. Đường tròn tâm O đường kính BC cắt cát cạnh AB, AC theo thứ tự tại E và D. a) Chứng minh AD. AC = AE.AB. b) Gọi H là giao điểm của BD và CE, gọi K là giao điểm của AH và BC. Chứng minh AH vuông góc với BC. c) Từ A kẻ các tiếp tuyến AM, AN đến đường tròn (O) với M, N là các tiếp điểm. Chứng minh nANM= n AKN . d) Chứng minh 3 điểm M, H, N thẳng hàng. 46
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Đề thi chung vào các trường chuyên Bài 1: Thu gọn các biểu thức sau: a) A =+−24 6 25 10() − 2. 2 ⎛⎞aa−+11⎛⎞ 2 b) B =+⎜⎟.1⎜⎟ − ⎝⎠aa+−11⎝⎠a +1 Bài 2: 3 Với giá trị nào của m thì đường thẳng (d): yxm=− +2 cắt Parabol 2 3 (P): yx=− 2 tại hai điểm phân biệt. 4 Bài 3: Giải các phương trình và hệ phương trìn: a) 51−=−x2 x . ⎧34 ⎪ −=2 ⎪ xy b) ⎨ 45 ⎪ −=3 ⎩⎪ xy c) −+xx2242 −+− 2 xx + 85 −= 2 + 3. Bài 4: x a) Cho hai số dương x, y thoả x +=yxy3 . Tính . y 111 b) Tìm các số nguyên dương thoả + = xy2 Bài 5: Cho tam giác ABC có ba góc nhọn (AB < AC), có đường cao AH . Gọi D và E lần lượt là trung điểm cùa AB và AC. a) Chứng minh rằng DE là tiếp tuyến chung của hai đường tròn ngoại tiếp tam giác DBH và ECH. b) Gọi F là giao điểm thứ hai của hai đường tròn ngoại tiếp tam giác DBH và CEH. Chừng minh HF đi qua trung điểm của DE. c) Chứng minh rằng đường tròn ngoại tiếp tam giác ADE đi qua điểm F. 47
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Đề thi vào lớp chuyên toán Bài 1: Tìm các giá trị của m để phương trình : xmxmm22− 230+−−= có 2 22 nghiệm phân biệt x1, x2 sao cho xx12+ = 6. Bài 2: Giải các phương trình sau: 32 a) +=−2 . xx22+−54 xx +− ⎛⎞⎛⎞55−−xx b) xx⎜⎟⎜⎟+=6. ⎝⎠⎝⎠xx++11 Bài 3: Cho hai số dương x, y thoả x33+ yxy=−. Chứng minh rằng xy22+<1. Bài 4: Tìm số tự nhiên N nhỏ nhất thoả cả hai tính chất sau: a) Chữ số cuối cùng là 6. b) Nếu bỏ chữ số 6 cuối ấy và thêm chữ số 6 vào trước các chữ số còn lại thì số mới nhận được gấp 4 lần số ban đầu. Bài 5: Cho đường tròn (O) và dây AB không qua tâm O. Điểm C thuộc cung lớn AB. Vẽ đường tròn (O1) đi qua C và tiếp xúc với đường thẳng AB tại A. Vẽ đường tròn (O2) qua C và tiếp xúc với AB tại B. Hai đường tròn cắt nhau tại điểm thức hai E. Gọi F là giao điểm của CE và đường tròn (O)( khác điểm C). a) Tứ giác AEBF là hình gì? b) Khi C lưu động trên cung lớn AB thì E di chuyển trên đường cố định nào? Bài 6: Cho tam giác ABC không có góc tù, có hai đường cao AH và BK. Cho biết AHBC≥ và BK≥ AC . Hãy tính các góc của tam giác ABC. 48
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Năm học 2007 – 2008 Bắt đầu từ năm học 2007 – 2008 thì thành phố chỉ tổ chức một kì thi tuyển sinh vào lớp 10 bao gồm cả vào trường chuyên. Đề thi môn toán gồm hai đề: một đề thi chung cho toàn thành phố, một đề thi vào các lớp chuyên toán. Đề thi chung trên toàn thành phố Bài 1: Giải các phương trình và hệ phương trình sau: a) xx2 −+=25 4 0. b) xx42−+=29 100 0. ⎧5617xy+= c) ⎨ ⎩97xy−= Bài 2: Thu gọn các biểu thức sau: 423− a) A = 62− b) B =+(32 6) 6 − 33 Bài 3: Một khu vườn hình chữ nhật có diện tích bằng 675 m2 và có chu vi bằng 120m. Tìm chiều dài và chiều rộng của khu vườn. Bài 4: Cho phương trình: xmxmm22−+−+=210 với m là tham số, x là ẩn. a) Giải phương trình khi m = 1. b) Tìm m để phương trình có hai nghiệm là x1, x2. c) Với điều kiện câu b, hãy tìm m để biểu thức A = xx12−− x 1 x 2 đạt giá trị nhỏ nhất. Bài 5: Cho tam giác ABC có 3 góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D. 49
- Nguyễn Tăng Vũ Đề thi vào lớp 10 a) Chứng minh rằng tứ giác BEFC nội tiếp và AH vuông góc với BC. b) Chứng minh AE. AB = AF. AC c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm OK của BC. Tính tỉ số khi tứ giác BHOC nội tiếp. BC d) Cho HF = 3 cm, HB = 4 cm, CE = 8 cm và HC > HE. Tính HC. Đề thi vào lớp chuyên toán Bài 1: a) Chứng minh rằng với mọi số thực x, y, z, t ta luôn có bất đẳng thức sau: x2222+++≥yztxyzt( ++) Đẳng thức xảy ra khi nào? b) Chứng minh rằng với mọi số thực dương a, b khác không ta luôn có bất đẳng thức sau: ab22⎛⎞ ab 22+≥3⎜⎟ +. ba⎝⎠ ba Bài 2: Tìm nghiệm nguyên dương của phương trình: x2 − xy=−−658 x y . Bài 3: 22 ⎪⎧xy+ ++=2211 xy Cho hệ phương trình: ⎨ ⎩⎪xyx()()+ 22 y+= m a) Giải hệ phương trình khi m = 24 b) Tìm m để phương trình có nghiệm Câu 4: Cho ( xx++222007)( yy ++ 2007) = 2007 Tính Sxy=+. Câu 5: ab+11+ Cho a, b là các số nguyên sao cho + cũng là số nguyên. Gọi ab d là ước số chung của a và b. Chứng minh rằng dab≤ + Bài 6: 50
- Nguyễn Tăng Vũ Đề thi vào lớp 10 Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O) ( AB < AC). Các tiếp tuyến với (O) tại B và C cắt nhau tại N. Vẽ dây AM song song với BC. Đường thẳng MN cắt đường tròn (O) tại M và P. 111 a) Cho biết +=, tính độ dài đoạn BC. OB22 NC 16 BP CP b) Chứng − . ACAB c) Chứng minh BC, ON và AP đồng qui. Tài liệu này chỉ gồm các đề thi không có lời giải. Mọi thắc mắc xin liên hệ Nguyễn Tăng Vũ. thanhchien06@gmail.com tangvu128@yahoo.com 51