Đề thi chọn học sinh giỏi cấp thành phố môn Toán - Năm học 2014-2015 - Phòng GD & ĐT Thanh Hóa (Có đáp án)
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp thành phố môn Toán - Năm học 2014-2015 - Phòng GD & ĐT Thanh Hóa (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_chon_hoc_sinh_gioi_cap_thanh_pho_mon_toan_nam_hoc_201.doc
Nội dung text: Đề thi chọn học sinh giỏi cấp thành phố môn Toán - Năm học 2014-2015 - Phòng GD & ĐT Thanh Hóa (Có đáp án)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP THÀNH PHỐ THÀNH PHỐ THANH HÓA NĂM HỌC: 2014 – 2015 Môn: Toán - Lớp 9 Đề chính thức Đề thi gồm có: 01 trang Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 02 tháng 12 năm 2014 ĐỀ BÀI Bài 1 (4,0 điểm) 1) Chứng minh biểu thức sau không phụ thuộc vào giá trị của x: 6x (x 6) x 3 3 1 A = . 2(x 4 x 3)(2 x) 2x 10 x 12 3 x x 2 Điều kiện x 0 , x 4; x 9 ; x 1 2 3 2 3 2) Rút gọn biểu thức: B = 2 2 3 2 2 3 Bài 2 (6,0 điểm) 3a 1 a 1 2a(a 2 1) 1) Cho phương trình : ( a là tham số) a x a x x2 a 2 a) Giải phương trình trên. b ) Tìm các giá trị nguyên dương của a để phương trình có nghiệm x là số nguyên tố. x3 y3 z3 3xyz 2) Tìm nghiệm nguyên dương của hệ phương trình sau: 2 x 2(y z) Bài 3 (4,0 điểm) 1) Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho : 2 abc n -1 Với n Z ; n >2 2 cba (n 2) 2) Cho tam giác ABC có 3 cạnh a, b, c thỏa mãn a + b + c = 6 . Chứng minh : 52 3( a2 + b2 + c2 ) + 2abc < 54 Bài 4 (4,0 điểm) Cho hình vuông ABCD cạnh là a và N là một điểm trên cạnh AB. Tia CN cắt tia DA tại E. Trên tia đối của tia BA lấy điểm F sao cho BF = DE. Gọi M là trung điểm của EF. 1) Chứng minh tam giác ACE đồng dạng với tam giác BCM. 2) Xác định vị trí điểm N trên AB sao cho diện tích tứ giác ACFE gấp ba lần diện tích hình vuông ABCD. Bài 5 (2,0 điểm) Cho tam giác ABC có Bµ Cµ 1050 và AB AC 2 2BC. Tính Bµ và Cµ (Hết) Họ và tên thí sinh: Số báo danh: Phòng thi:
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP THÀNH PHỐ THÀNH PHỐ THANH HÓA NĂM HỌC: 2014 – 2015 HƯỚNG DẪN CHẤM Bài Câu Tóm tắt cách giải Điểm 6x (x 6) x 3 3 1 A 2(x 4 x 3)(2 x) 2x 10 x 12 3 x x 2 1) 6x (x 6) x 3 3 1 A 2(2 x)( x 3)( x 1) 2( x 3)(2 x) (2 x)( x 1) 0,75 1 2điểm Do x 0; x 1; x 4; x 9 (4đ) 6x (x 6) x 3 3( x 1) 2( x 3) A = 2( x 1)( x 3)(2 x) 6x x x 6 x 3 3 x 3 2 x 6 A = 2( x 1)( x 3)(2 x) 0,75 (2x 6 x) 2( x 3) x( x 3) x( x 3) A = 2( x 1)( x 3)(2 x) ( x 1)( x 3)(2 x) 1 0,5 A = = => ĐPCM 2( x 1)( x 3)(2 x) 2 B 2 3 2 3 2 3 2 3 2) 1,0 2 2 4 2 3 2 4 2 3 3 3 3 3 2điểm B (2 3)(3 3) (3 3)(2 3) 3 3 3 3 2 (3 3)(3 3) 6 0,75 B 1 B 2 2 0,25 3a 1 a 1 2a(a 2 1) (1) a x a x x2 a 2 ĐKXĐ : x a 0,25 1a) 2 Biến đổi đưa phương trình về dạng : 2ax = a (a +1) 0,5 2 Với a = 0 thì phương trình có dạng : 0x = 0. 2điểm Phương trình (1) có vô số nghiệm với x 0 0,25 a(a 1) Với a 0 ta có x = 0, 25 2
- Bài Câu Tóm tắt cách giải Điểm a(a 1) Để x = là nghiệm của phương trình (1) thì : 2 a(a 1) a(a 1) a (2) và - a (3) 2 2 0,25 Giải(2) ta được a 1, a 0 Giải (3) ta có: a 0 , a -3 0,25 Vậy : a = 0 phương trình có vô số nghiệm x 0 a = - 3 ; a= 1 phương trình vô nghiệm. a 1; a -3 và a 0 phương trình có nghiệm duy nhất 0,25 a(a 1) x = 2 Theo câu a: Với a = 0 thì phương trình có vô số nghiệm x 0 (loại do a >0) 0,25 1b) Với a 1; a -3 và a 0 phương trình có nghiệm duy nhất 2 a(a 1) x = 2,0 2 điểm Vì a là số nguyên dương và a 1nên: Nếu a = 2 thì x = 3 , là số nguyên tố (thỏa mãn) 0,5 Nếu a > 2 thì a = 2k hoặc a = 2k + 1 với k N, k > 1 0,25 Xét a = 2k thì x = k(2k + 1) là tích của hai số tự nhiên lớn hơn 1 nên x là hợp số. (loại) 0,5 Xét a = 2k +1 thì x = (2k +1)(k+1) là tích của hai số tự nhiên lớn hơn 1 nên x là hợp số. ( loại) Vậy a =2 thì nghiệm của phương trình x = 3 là số nguyên tố. 0,5 x3 y3 z3 3xyz (1) 2 2) x 2(y z) (2) 2,0 Vì x, y, z > 0 nên xyz > 0. điểm Kết hợp với phương trình (1) => x3 > y3; x3 > z3.=> x > y, x > z. 0,5 Do đó 2x > y + z hay 4x > 2( y+z) kết hợp với (2) ta có : x2 x y = z =1 (vì x, y nguyên dương) 0,5 y z 2 Vậy nghiệm nguyên dương của hệ phương trình là: 0,25 (x;y;z) = (2;1;1)
- Bài Câu Tóm tắt cách giải Điểm Ta có : abc = 100a + 10b + c = n2 - 1 cba = 100c + 10b + a = (n - 2)2 0,25 1) 99(a - c) = n2 - 1 - n2 + 4n - 4 = 4n - 5 2điểm 4n - 5 99 ( do a - c là số nguyên) 0,5 Lại có : 100 n2 - 1 999 101 n2 1000 11 n 31 39 4n - 5 119 0,75 3) Vì 4n - 5 99 nên 4n - 5 = 99 n = 26 0,25 abc = 675 0,25 (4đ) Gọi p là nửa chu vi của tam giác ABC ta có : a b c b c - a p - a = - a > 0 2 2 Tương tự p - b > 0 ; p - c > 0 0,25 Áp dụng bất đẳng thức Cô Si cho 3 số dương p -a; p -b; p -c ta 2) có: (p –a) +(p - b) + (p –c) 33 (p a)(p b)(p c) 2 điểm 3 3p - (a b c) => 0 E· CF 900 4 ECF vuông cân tại C 0,5 Có M là trung điểm của EF nên CM là đường trung tuyến vừa 1) là đường cao, phân giác, trung trực.
- Bài Câu Tóm tắt cách giải Điểm E M A B N x F 4 (4đ) D C 1) => E· CM 450 , mà A· CB 450 ( do ABCD là hình vuông) 2,0 · · điểm ACE BCM (1) 0,5 Mặt khác theo tính chất đường trung tuyến trong tam giác 1 vuông ta có: MA = MC ( = EF ) => M trung trực của AC 2 mà BD là trung trực của đoạn thẳng AC. =>M, B, D thẳng hàng => M· BC E· AC 1350 (2) 0,5 0,25 Từ (1) và (2) => ACE ∽ BCM (g.g) Đặt BN =x => AN = a –x 1 1 2 SACFE = SACE + SECF = CD.AE .CE . 2 2 0,25 AE AN Tính AE: Có ( do AN// DC) ED DC 2) AE a x a(a x) AE AE AD a x 0,5 2,0 a 4 điểm Ta có: CE2 = CD2 + DE2 = a2 + (a + AE)2 = a2 + x2 4 3 1 a(a x) 1 2 a a (a x) 0,5 SACFE = a. + (a + ) = 2 x 2 x2 2x2 3 a (a x) 2 2 2 Mà SACFE = 3SABCD => = 3a 6x - ax - a = 0 2x2 a (2x - a)(3x+a) = 0 x = 0,5 2 a Vậy BN = N là trung điểm của AB thì SACFE = 3SABCD 0,25 2
- Bài Câu Tóm tắt cách giải Điểm A E B C D F Trên tia BC lấy điểm D sao cho D· AB 300 . 2điểm Từ GT suy ra: Aµ 1800 (Bµ Cµ ) 750. 0,5 · 0 0 0 5 Do đó D nằm trên cạnh BC và DAC 75 30 45 . 0,25 2,0đ Kẻ BE AD, CF AD ( E;F AD) Ta có AB = 2BE ( cạnh đối diện với góc 300 trong tam giác vuông) và AC = 2 CF ( cạnh huyền trong tam giác vuông cân) 0,25 Do đó AB + AC2 = 2BC 2BE + 2CF = 2BC BE + CF =BC BE + CF = BD + CD 0,5 Mà BE BD và CF CD nên xáy ra đẳng thức trên khi và chỉ khi E,F trùng D. Tức là AD BC. µ 0 0 0 µ 0 0 0 Từ đó B 90 30 60 ; C 90 45 45 0,5 Ghi chú: HS làm cách khác mà đúng vẫn cho điểm tối đa, bài hình không vẽ hình hoặc vẽ hình sai thì không cho điểm.
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THI CHỌN HỌC SINH GIỎI CẤP THÀNH PHỐ THÀNH PHỐ THANH HÓA NĂM HỌC 2014-2015 . MÔN TOÁN- LỚP 9 Thời gian : 150 phút ( không kể thời gian giao đề) ĐỀ BÀI Bài 1: (3điểm) x y 2 2 2 2 Cho biểu thức: A = x x y x x y 2 1) Rút gọn biểu thức A với x y 0 2) Tính giá trị của A khi x = 3 2 13 5 và y 3 2 13 5 Bài 2: (4 điểm) x(x y) 6 1) Giải hệ phương trình: 3 3 x y 18y 64 2) Tìm x, y, z nguyên dương đôi một khác nhau thoả mãn: 68302 6830 3x + 3y + 3z = 1 68302 68312 6831 Bài 3: ( 4điểm) 1) Tìm các số hữu tỉ n sao cho : n2 + n + 503 là số chính phương 2) Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P(1)= 1; P(2)= 4, P(3)= 9; P(4)= 16, P(5)= 25. Tính P(6) ; P(7) Bài 4: ( 7 điểm) 1) Cho tam giác ABC nhọn có B· AC 450 . Gọi BE và CF là các đường cao, H là trực tâm của tam giác ABC. M và K lần lượt là trung điểm của BC, AH. a) Chứng minh EF, MK, OH đồng quy. (vởi O là tâm của đường ngoại tiếp tam giác ABC) b) Cho EF = 25 cm. Tính bán kính của đường tròn (O). 2) Cho tứ giác ABCD có số đo độ dài các cạnh là a, b, c, d và số đo diện tích là S. Chứng minh: a + b + c + d 4 S . Dấu “ =” xảy ra khi nào? Bài 5 ( 2 điểm) Cho x,y,z là các số thực không âm và thỏa mãn điều kiện: x2014 + y2014 + z2014 = 3. Tìm GTLN của biểu thức B = x2+ y2+ z2 (Hết) Họ và tên thí sinh SBD
- HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI – MÔN TOÁN 9 ( Vòng 2) NĂM HỌC 2014 – 2015 Bài Câu Tóm tắt cách giải Điểm 2 2 x y 2 2 2 2 1) Ta có: A x x y x x y 2 1,5 x y = .(2x 2y) = ( x –y)2. điểm 2 => A = x - y ( do x y 0 ). 1,5 1 Với x = 3 2 13 5 và y 3 2 13 5 ( thỏa mãn ĐK) 0,25 3 đ 2) Thay vào A ta được: A 3 2 13 5 3 2 13 5 3 1,5 A3 3 2 13 5 3 2 13 5 điểm 3 2 13 5 2 13 5 3A (2 13 5)(2 13 5) 0,5 A3 = 10 - 9A A3 + 9A - 10 = 0 ( A -1) ( A2 + A +10) =0 0,75 A =1 vì A2 + A + 10 > 0 Vậy A = 1 x(x y) 6 x(x y) 6 3 3 3 3 0,75 x y 18y 64 x y 3yx(x y) 64 3 2 1) x x(x y) 6 x(x y) 6 2 4đ (x y) 3 64 x y 4 5 y 2điểm 2 1,0 3 5 Vậy hệ phương trình có nghiệm là : (x,y) = ; 0,25 2 2 Biến đổi vế phải Ta có: 68312 6830 1 2 68302 2.6830 1 1 68302 68312 2.6830. Bài Câu Tóm tắt cách giải Điểm
- 68302 6830 1 68302 68312 6831 68302 6830 68312 2.6830 2) 68312 6831 2 6830 6830 6830 6830 2 2điểm 6831 6831 6831 0,5 6831 6831 6831 6831 (6đ) PT đưa về : 3x + 3y + 3z = 6831 Không mất tính tổng quát giả sử x 3 (1 + 3 + 3 ) = 3 .253 0,25 Vì 1 + 3y - x + 3z -x không chia hết cho 3 và 253 cũng không 3x 33 (1) chia hết cho 3 nên: y- x z - x 1 3 3 253 (2) (1) => x = 3 thế vào (2) ta được: 1 + 3y - 3 + 3z -3 = 253 0,5 3y-3(1 + 3z -y) = 252 = 32 . 28 0,25 Do 1 + 3z -y không chia hết cho 3 và 28 không chia hết cho 3 3 y 3 32 y 5 y 5 nên 0,25 z y z 5 3 1 3 28 3 3 z 8 Vậy (x; y; z) = (3; 5; 8) và các hoán vị của nó. 0,25 Giả sử tồn tại số hữu tỉ n và số tự nhiên m khác 0 để: n2 + n + 503 = m2 (1). p 1) Đặt n = , với p Z; q N* , (p,q) = 1. Thay vào (1) ta được: q 3 2 2điểm p p 2 503 m 4đ q q => p2 +pq +503q2 = m2q2 p2 = - q( p +503q - m2q ) p2 q mà (p,q) 1,nên q 1 hay n p Z 0,5 Mặt khác (1) 4(n2 + n +503) =4m2 4m2 – ( 2n +1)2 = 2011. (2m +2n +1)( 2m - 2n -1) = 2011 0,5
- Bài Câu Tóm tắt cách giải Điểm Vì m N* nên: (2m +2n +1)+ ( 2m - 2n -1) = 4m > 0 và 2m - 2n - 1 Z ; 2m + 2n + 1 Z => 2m +2n +1 thuộc ước dương của 2011 0,25 Mà 2011 là số nguyên tố 2m 2n 1 2011 m 503 nên `0,25 2m 2n 1 1 n 502 3 2m 2n 1 1 m 503 Hoặc 0,25 2m 2n 1 2011 n 503 Vậy n = 502 hoặc n = - 503 thì n2 + n + 503 là số chính phương. 0,25 P(1) = 1 = 12 ; P(2) = 4 = 22 , P(3) = 9 = 32 ; P(4)= 16 = 42 , P(5) = 25 = 52 . 0,25 2) Xét đa thức: Q(x) = P(x) – x2. Ta có : Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x). 0,25 2điểm Vì hệ số của x5 bằng 1 nên Q(x) có dạng: Q(x) = ( x - 1)(x - 2)(x - 3)(x - 4)(x - 5). 0,5 Vậy ta có : Q(6) = ( 6 - 1)(6 - 2)(6 - 3)(6 - 4)(6 - 5) = P(6) – 62. => P(6) = 5! + 62 = 156. 0,5 Q(7) = ( 7 - 1)(7 - 2)(7 - 3)(7 - 4)(7 - 5) = P(7) – 72 => P(7) = 6! + 72 = 769. 0,5 Vậy P(6) = 156; P(7) = 769 AFC có A· FC 900 , · 0 1a) A FAC 45 (GT) AFC vuông cân tại F 2,5 => AF = FC. 0,5 4 điểm K Mặt khác: O E H· AF F· CB (cùng phụ (7đ) với A· BC ). F I H AFH = CFB (g.c.g) B M C AH = BC 0,5 Theo tính chất trung tuyến thuộc cạnh huyền của các tam giác vuông và do AH = BC
- Bài Câu Tóm tắt cách giải Điểm => FK = KE = EM = MF => Tứ giác MEKF là hình thoi. 1a) => KM cắt EF tại I là trung điểm của mỗi đường (1). 0,5 Lại có F thuộc trung trực của AC ( do AF = FC). O cũng thuộc trung trực của AC ( do O là tâm của đường tròn ngoại tiếp tam giác ABC) => FO là đường trung trực của AC => FO AC 0,5 Mà BE AC (GT) nên FO // BE => FO // HE 4 Chứng minh tương tự ta có EO // CF => EO // FH => Tứ giác EHFO là hình bình hành => EF cắt HO tại trung điểm của mỗi đường (2) 0,5 Từ (1) và (2) => EF, HO, KM đồng quy tại I Do FO AE; EO AF(theo câu b). Nên O là trực tâm của AEF. 1b) => AO EF mà KM EF ( t/c đường chéo hình thoi) => AO // KM 0,5 Ta lại có : OM BC ( OM là trung trực của BC) 2điểm và AH BC ( H là trực tâm của ABC) => OM // AH Nên tứ giác AOMK là hình bình hành => AO = KM. ( 3) 0,5 Vì A· FK F· AK ; M· FC M· CF mà M· CF H· AF M· FC A· FK · 0 => KFM = 90 => Hình thoi KEMF là hình vuông 0,5 => EF = KM (4) Từ (3) và (4) và EF =25 (cm) => AO = EF = 25 cm. Vậy bán kính đường tròn(O) là 25 . 0,5 A a B d C' Giả sử AB = a, BC= b, 2) b CD =c, DA =d. D c C
- Bài Câu Tóm tắt cách giải Điểm Ta có: (a+b+c+d)2 = (a + c)2 + (b + d)2 + 2(a + c)(b+d) 4(a+c)(b+d) a +b+c+d 2 (a c)(b d) (1) 0,5 1 ' 1 1 Kẻ CC’ AD. Ta có SADC = AD.CC AD.DC cd. 0,5 2 2 2 2,5 Do đó 2SADC cd . Chứng minh tương tự ta có: điểm 2SABC + 2SDBC + 2SADC + 2SABD ab + ad + bc + cd 0,5 => (a+c)(b+d) = ab + ad + bc + cd 2SABC + 2SDBC + 2SADC + 2SABD = 4S (2) Từ(1) và (2) có a +b+c+d 4 S 0,5 a c b d Dấu “=”xảy ra DAAB, AB CB,BCCD,CD DA Aµ Bµ Cµ Dµ 900 Tứ giác ABCD là hình vuông a b c d 0,5 Áp dụng BĐT CôSi cho 2014 số không âm: 2014 2014 ( x ; x ; 1; 1;;1 ) ta có: 2012 2.x2104 2012 2014 x2.2014.12012 x2 0,5 2014 2.y2104 2012 Tương tự : 2014 y2.2014.12012 y2 2014 5 2,0 2.z2104 2012 (2đ) điểm 2014 z2.2014.12012 z2 2014 Cộng 3 BĐT trên theo từng vế ta được 0,5 2.(x2014 y2014 z2014 ) 3.2012 x2 y2 z2 2014 Mà x2014 + y2014 + z2014 = 3 2.3 3.2012 x 2 + y2 + z2 3 . Hay B 3 . 0,5 2014 Dầu “ =” xảy ra x = y = z = 1. Vậy GTLN của B = 3 khi x = y = z = 1 0,5 Ghi chú: HS làm cách khác mà đúng vẫn cho điểm tối đa, bài hình không vẽ hình hoặc vẽ hình sai thì không cho điểm.