Đề cương ôn thi môn Toán 9
Bạn đang xem 20 trang mẫu của tài liệu "Đề cương ôn thi môn Toán 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_thi_mon_toan_9.docx
Nội dung text: Đề cương ôn thi môn Toán 9
- BÀI TẬP TÌM GTLN, GTNN và GIẢI PHƯƠNG TRÌNH, HỆ THỨC VI - ÉT I- BÀI TẬP TÌM GTLN, GTNN Bài toán 1: Tìm GTLN của các biểu thức: a) A = 5 – 8x – x2 b) B = 5 – x2 + 2x – 4y2 – 4y Giải: a) A = 5 – 8x – x2 = -(x2 + 8x + 16) + 21 = -(x + 4)2 + 21 21 Max A = 21 khi x = -4. b) B = 5 – x2 + 2x – 4y2 – 4y = -(x2 – 2x + 1) – (4y2 + 4y + 1) + 7 = -(x – 1)2 – (2y + 1)2 + 7 7 1 Max B = 7 khi x = 1, y . 2 Bài toán 2: Cho x + y = 1. Tìm GTNN của biểu thức M = x3 + y3. Giải: M = x3 + y3 = (x + y)(x2 – xy + y2) = x2 - xy + y2 2 2 2 2 2 x y x y 1 2 2 x y xy (x y ) 2 2 2 2 2 2 2 1 M (x2 y2 ) 2 Ngoài ra: x + y = 1 x2 + y2 + 2xy = 1 2(x2 + y2) – (x – y)2 = 1 => 2(x2 + y2) ≥ 1 1 1 1 Do đó x2 y2 và x2 y2 x y 2 2 2 1 1 1 1 1 Ta có: M (x2 y2 ) và (x2 y2 ) M . 2 2 2 2 4 1 1 Do đó M và dấu “=” xảy ra x y 4 2 1 1 Vậy GTNN của M x y 4 2 Bài toán 3: Cho hai số x, y thỏa mãn điều kiện: (x2 – y2 + 1)2 + 4x2y2 – x2 – y2 = 0. Tìm GTLN và GTNN của biểu thức x2 + y2.
- Giải: (x2 – y2 + 1)2 + 4x2y2 – x2 – y2 = 0 [(x2 + 1) – y2]2 + 4x2y2 – x2 – y2 = 0 x4 + 2x2 + 1 + y4 – 2y2(x2 + 1) + 4x2y2 – x2 – y2 = 0 x4 + y4 + 2x2y2 + x2 – 3y2 + 1 = 0 x4 + y4 + 2x2y2 - 3x2 – 3y2 + 1 = -4x2 (x2+y2)2-3(x2+y2)+1=-4x2 Đặt t = x2 + y2. Ta có: t2 – 3t + 1 = -4x2 Suy ra: t2 – 3t + 1 ≤ 0 3 9 5 t 2 2. .t 0 2 4 4 2 3 5 3 5 t t 2 4 2 2 5 3 5 t 2 2 2 3 5 3 5 t 2 2 Vì t = x2 + y2 nên : 3 5 GTLN của x2 + y2 = 2 3 5 GTNN của x2 + y2 = 2 Bài toán 4: Cho các số thực dương thỏa mãn điều kiện: x2 + y2 + z2 27. Tìm GTLN và GTNN của biểu thức: x + y + z + xy + yz + zx. Giải: Ta có: (x – y)2 + (x – z)2 + (y – z)2 0 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx 0 2 2 2 2 2 2 2 (x + y + z) = x + y + z +2(xy + yz + zx) 3(x + y + z ) 81 x + y + z 9 (1) Mà xy + yz + zx x2 + y2 + z2 27 (2) Từ (1) và (2) => x + y + z + xy + yz + zx 36. Vậy max P = 36 khi x = y = z = 3. Đặt A = x + y + z và B = x2 + y2 + z2
- A2 B (A 1)2 B 1 B 1 P A 2 2 2 2 B 1 Vì B 27 -14 P -14 2 x y z 1 Vậy min P = -14 khi 2 2 2 x y z 27 Hay x 13; y 13; z 1 . Bài toán 5: Giả sử x, y là các số dương thỏa mãn đẳng thức: x + y = 10 . Tìm giá trị của x và y để biểu thức: P = (x4 + 1)(y4 + 1) đạt GTNN. Tìm GTNN ấy. Giải: Ta có: P = (x4 + 1)(y4 + 1) = (x4 + y4) + (xy)4 + 1 Đặt t = xy thì: x2 + y2 = (x + y)2 – 2xy = 10 – 2t x4 + y4 = (x2 + y2)2 – 2x2y2 = (10 – 2t)2 – 2t2 = 2t2 – 40t + 100 Do đó: P = 2t2 – 40t + 100 + t4 + 1 = t4 + 2t2 – 40t + 101 4 2 2 2 2 2 = (t – 8t + 16) + 10(t – 4t + 4) + 45 = (t – 4) + 10(t – 2) + 45 P 45 và dấu “=” xảy ra x + y = 10 và xy = 2. Vậy GTNN của P = 45 x + y = 10 và xy = 2. Bài toán 6: 4x 3 Tìm GTLN và GTNN của: y . x2 1 Giải: * Cách 1: 4x 3 ax2 4x 3 a y a x2 1 x2 1 Ta cần tìm a để ax2 4x 3 a là bình phương của nhị thức. a 1 Ta phải có: ' 4 a(3 a) 0 a 4 - Với a = -1 ta có: 4x 3 x2 4x 4 (x 2)2 y 1 1 x 1 x2 1 x2 1 y 1. Dấu “=” xảy ra khi x = -2.
- Vậy GTNN của y = -1 khi x = -2. - Với a = 4 ta có: 4x 3 -4x2 4x 1 (2x 1)2 y 4 4 4 x 1 x2 1 x2 1 1 Dấu “=” xảy ra khi x = . 2 1 Vậy GTLN của y = 4 khi x = . 2 * Cách 2: 4x 3 Vì x2 + 1 0 nên: y yx2 4x y 3 0 (1) x2 1 y là một giá trị của hàm số (1) có nghiệm 3 - Nếu y = 0 thì (1) x 4 - Nếu y 0 thì (1) có nghiệm ' 4 y(y 3) 0 (y 1)(y 4) 0 y 1 0 y 1 0 hoặc y 4 0 y 4 0 1 y 4 Vậy GTNN của y = -1 khi x = -2. 1 Vậy GTLN của y = 4 khi x = . 2 x2 x 1 Bài toán 7: Tìm GTLN và GTNN của: A . x2 x 1 Giải: Biểu thức A nhận giá trị a khi và chỉ khi phương trình ẩn x sau đây có nghiệm: x2 x 1 a (1) x2 x 1 2 2 2 1 1 3 1 3 Do x + x + 1 = x + 2. .x + x 0 2 4 4 2 4 Nên (1) ax2 + ax + a = x2 – x + 1 (a – 1)x2 + (a + 1)x + (a – 1) = 0 (2) Trường hợp 1: Nếu a = 1 thì (2) có nghiệm x = 0. Trường hợp 2: Nếu a 1 thì để (2) có nghiệm, điều kiện cần và đủ là 0 , tức là: (a 1)2 4(a 1)(a 1) 0 (a 1 2a 2)(a 1 2a 2) 0 1 (3a 1)(a 3) 0 a 3(a 1) 3
- 1 (a 1) a 1 Với a hoặc a = 3 thì nghiệm của (2) là x 3 2(a 1) 2(1 a) 1 Với a thì x = 1 3 Với a = 3 thì x = -1 Kết luận: gộp cả 2 trường hợp 1 và 2, ta có: 1 GTNN của A khi và chỉ khi x = 1 3 GTLN của A = 3 khi và chỉ khi x = -1 Bài toán 8: Cho a, b là các số dương thỏa mãn ab = 1. Tìm GTNN của biểu thức: 4 A (a b 1)(a2 b2 ) . a b Giải: a Theo bất đẳng thức Côsi cho hai số dương a2 và b2 a2 b2 2 a2b2 2ab 2 (vì ab = 1) 4 4 4 A (a b 1)(a2 b2 ) 2(a b 1) 2 (a b ) (a b) a b a b a b 4 Cũng theo bất đẳng thức côsi cho hai số dương a + b và . a b 4 4 Ta có: (a + b) + 2 (a b). 4 a b a b Mặt khác: a b 2 ab 2 4 Suy ra: A 2 (a b ) (a b) 2 4 2 8 a b Với a = b = 1 thì A = 8 Vậy GTNN của A là 8 khi a = b = 1. Bài toán 9: Giả sử x và y là hai số thỏa mãn x > y và xy = 1. Tìm GTNN của biểu thức: x2 y2 A . x y Giải: x2 y2 x2 2xy y2 2xy (x y)2 2xy Ta có thể viết: A x y x y x y (x y)2 2xy 2 x y 2 x y Do x > y và xy = 1 nên: A x y x y x y 2 x y 2 Vì x > y x – y > 0 nên áp dụng bất đẳng thức côsi với 2 số không âm, ta có:
- x y 2 x y A 2. . 2 x y 2 x y 2 Dấu “=” xảy ra (x y)2 4 (x y) 2 (Do x – y > 0) 2 x y 2 Từ đó: A 2 3 2 x y 2 Vậy GTNN của A là 3 xy 1 x 1 2 x 1 2 hay Thỏa điều kiện xy = 1 y 1 2 y 1 2 Bài 10: Cho phương trình: x4 + 2x2 +2ax – (a – 1)2 = 0 (1) Tìm giá trị của a để nghiệm của phương trình đó: a) Đạt GTNN. b) Đạt gía trị lớn nhất. Gợi ý: Gọi m là nghiệm của phương trình (1) thì: m4 + 2m2 + 2am + a2 + 2a + 1 = 0 (2) Viết (2) dưới dạng phương trình bậc hai ẩn a. a2 + 2 (m + 1) a + (m4 + 2m2 + 1) = 0 Để tồn tại a thì ' 0 Giải điều kiện này được m4 - m2 0 m(m – 1) 0 0 m 1 Vậy nghịêm của phương trình đạt GTNN là 0 với a = -1 Vậy nghịêm của phương trình đạt GTLN là 1 với a = -2 x2 2x 2 Bài 11: Tìm GTNN, GTLN của t = x2 1 Gợi ý: Vì x2 + 1 > 0 với mọi x x2 2x 2 Đặt a = => (a – 1) x2 – 2 x +a – 2 = 0 (1) x2 1 a là một giá trị của hàm số (1) có nghiệm. 1 - Nếu a = 1 thì (1) x = 2 - Nếu a 1 thì (1) có nghiệm ' 0
- 3 5 1 5 3+ 5 5 1 Min A = với x = ;Max A = với x = 2 2 2 2 Bài toán 12: Cho x, y, z là các số dương thỏa mãn điều kiện: xyz = 1. Tìm GTNN của biểu thức: 1 1 1 E . x3 (y z) y3 (z x) z3 (x y) Giải: 1 1 1 1 Đặt a ;b ;c abc 1 x y z xyz 1 1 Do đó: a b x y (a b).xy x y c(a b) x y Tương tự: y + z = a(b + c) z + x = b(c + a) 1 1 1 1 1 1 E . . . x3 (y z) y3 (z x) z3 (x y) 1 1 1 a2 b2 c2 a3. b3. c3. a(b c) b(c a) c(a b) b c c a a b a b c 3 Ta có: (1) b c c a a b 2 Thật vậy: Đặt b + c = x; c + a = y; a + b = z x y z a b c 2 y z x z x y x y z a ;b ;c 2 2 2 a b c y z x z x y x y z Khi đó, VT b c c a a b 2x 2y 2z 1 y x 1 z x 1 z y 3 3 3 1 1 1 2 x y 2 x z 2 y z 2 2 2 Nhân hai vế (1) với a + b + c > 0. Ta có: a(a b c) b(a b c) c(a b c) 3 (a b c) b c c a a b 2 a2 b2 c2 a b c 33 abc 3 3 E b c c a a b 2 2 2 2 3 GTNN của E là khi a = b = c = 1. 2
- II-BÀI TẬP TÌM GIẢI PHƯƠNG TRÌNH Bài 1: Giải phương trình: x 2 2 x 1 x 10 6 x 1 2 x 2 2 x 1 (2) x 1 0 HD: (2) x 1 2 x 1 1 x 1 2.3 x 1 9 2 x 1 2 x 1 1 x 1 (*) x 1 1 | x 1 3 | 2.| x 1 1| Đặt y = x 1 (y ≥ 0) phương trình(*) đã cho trở thành: y 1 | y 3 | 2 | y 1| – Nếu 0 ≤ y 3: y + 1 + y – 3 = 2y – 2 (vô nghiệm) Với y = 3 x + 1 = 9 x = 8 (thoả mãn) Vậy: x = 8 Bài 2:Giải phương trình: x 2 2x 5 x 2 3 2x 5 7 2 5 HD:ĐK: x 2 PT 2x 5 2 2x 5 1 2x 5 6 2x 5 9 14 2x 5 1 2x 5 3 14 2x 5 5 x 15 (Thoả mãn) Vậy:x = 15 Bài 3:Giải phương trình: x 2 x 1 x 2 x 1 2 HD:ĐK: x 1 Pt x 1 2 x 1 1 x 1 2 x 1 1 2 x 1 1 x 1 1 2 Nếu x 2 pt x 1 1 x 1 1 2 x 2 (Loại) Nếu x 2 pt x 1 1 1 x 1 2 0x 0 (Luôn đúng với x ) Vậy tập nghiệm của phương trình là: S x R |1 x 2 Bài 4. Giải phương trình: x x2 1 x x2 1 2 HD:Điều kiện: x 1 Nhận xét. x x2 1. x x2 1 1 1 Đặt t x x2 1 thì phương trình có dạng: t 2 t 1 t Thay vào tìm được x 1 Bài 5. Giải phương trình: 2x2 6x 1 4x 5 4 HD:Điều kiện: x 5 t2 5 Đặt t 4x 5(t 0) thì x . Thay vào ta có phương trình sau: 4
- t4 10t2 25 6 2. (t2 5) 1 t t4 22t2 8t 27 0 16 4 (t2 2t 7)(t2 2t 11) 0 Ta tìm được bốn nghiệm là: t1,2 1 2 2; t3,4 1 2 3 Do t 0 nên chỉ nhận các gái trị t1 1 2 2,t3 1 2 3 Từ đó tìm được các nghiệm của phương trình l: x 1 2 vaø x 2 3 Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện 2x2 6x 1 0 Ta được: x2 (x 3)2 (x 1)2 0 , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : 2y 3 4x 5 và đưa về hệ đối xứng (Xem phần đặt ẩn phụ đưa về hệ) Bài 6. Giải phương trình sau: x 5 x 1 6 HD:Điều kiện: 1 x 6 Đặt y x 1(y 0) thì phương trình trở thành: y2 y 5 5 y4 10y2 y 20 0 ( với 1 21 1 17 y 5) (y2 y 4)(y2 y 5) 0 y (loaïi), y 2 2 11 17 Từ đó ta tìm được các giá trị của x 2 2 Bài 7. Giải phương trình sau : x 2004 x 1 1 x HD: ĐK: 0 x 1 Đặt y 1 x thì phương trình trở thành: 2 1 y 2 y2 y 1002 0 y 1 x 0 1 Bài 8. Giải phương trình sau : x2 2x x 3x 1 x HD:Điều kiện: 1 x 0 1 1 Chia cả hai vế cho x ta nhận được: x 2 x 3 x x 1 Đặt t x , ta giải được. x Bài 9. Giải phương trình : x2 3 x4 x2 2x 1 1 1 HD: x 0 không phải là nghiệm , Chia cả hai vế cho x ta được: x 3 x 2 x x 1 3 1 5 Đặt t=3 x , Ta có : t t 2 0 t 1 x x 2 Bài 10.Giải phương trình:3x2 21x 18 2 x2 7x 7 2 HD:Đặt y = x2 7x 7 ; y 0 5 y Phương trình có dạng: 3y2 + 2y - 5 = 0 3 y 1 y 1
- 2 x 1 Với y = 1 x 7x 7 1 Là nghiệm của phương trình đã cho. x 6 Nhận xét : Đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp bài đơn giản, đôi khi phương trình đối với t lại quá khó giải 6 2x 6 2x 8 Bài 11. Giải phương trình: 5 x 5 x 3 HD:Điều kiện: 5 x 5 Đặt u 5 x,v 5 y 0 u,v 10 . u2 v2 10 (u v)2 10 2uv Khi đó ta được hệ phương trình: 4 4 8 2 4 2(u v) (u v) 1 u v 3 uv 3 Bài 12. Giải phương trình: 4 629 x 4 77 x 8 HD:ĐK: 77 x 629 u 4 629 x Đặt (u;v 0) 4 v 77 x u v 8,u 4 v 4 706 Đặt t = uv t 2 128t 1695 0 t 15 t 113 Với t = 15 x = 4 Với t = 113 x = 548 Bài 13. Giải phương trình: x3 x2 1 x3 x2 2 3 (1) HD:Với điều kiện: x3 x2 1 0 x3 x2 2 0 u x3 x2 1 Đặt Với v > u ≥ 0 3 2 v x x 2 Phương trình (1) trở thành u + v = 3 Ta có hệ phương trình u v 3 2 2 v u 3 u v 3 u v 3 u 1 (v u)(v u) 3 v u 1 v 2 x3 x2 1 1 3 2 x x 2 2 x3 x2 1 1 3 2 x x 2 4
- x3 x2 2 0 (x 1)(x2 2x 2) 0 x 1 (do x2 2x 2 0 x) Vậy phương trình đã cho có tập nghiệm là S = {1} 2 2 Bài 14. Giải phương trình: 1 x 2 x 3 1 x2 0 1 x 1 HD: Điều kiện: 0 x 1 (*) x 0 x 0 2 2 Với điều kiện (*),đặt u x ;v x , với u ≥ 0, v 3 3 1 x 2 1 u 4 2 Ta có: 2 2 x v 3 Do dó ta có hệ 2 2 u v u v 3 3 4 2 4 4 1 u v u v 1 2 2 u v u v 3 3 2 2 u2 v2 2u2 .v2 1 u v 2 2u.v 2u2v2 1 2 2 u v u v 3 3 2 4 2 2 2 2 16 65 2u.v 2u .v 1 2u .v u.v 0 9 9 81 2 u v 3 8 194 u.v 18 2 u v 5 8 194 u.v 18 u và v là nghiệm của phương trình 2 2 8 194 y y 0(a) 3 18 2 8 194 y 2 y 0(b) 3 18 (b) vô nghiệm (a) có 2 nghiệm
- 97 97 1 3 1 3 2 2 y ; y 1 2 2 3 u1 y1 u2 y2 Do đó: v1 y2 v2 y1 97 1 3 2 Vì u ≥ 0 nên ta chọn u y 2 3 2 97 97 1 3 1 3 2 2 x x 3 3 2 1 97 Vậy phương trình đã cho có nghiệm duy nhất x 1 3 9 2 Bài 15. Giải phương trình: 4 18 5x 4 64 5x 4 HD:Với điều kiện 18 x 18 5x 0 18 64 5 x (*) 64 64 5x 0 x 5 5 5 Đặt u 4 18 5x,v 4 64 5x , với u ≥ 0, v ≥ 0 u 4 18 5x Suy ra 4 v 64 5x Phương trình đã cho tương đương với hệ: u v 4 u v 4 4 4 2 2 2 2 u v 82 u v 2(uv) 82 v 0,v 0 v 0,v 0 Đặt A = u + v và P = u.v, ta có: S 4 2 2 2 S 2P 2P 82 P 0, S 0 S 4 S 4 2 p 32P 87 0 P 3 P 29 P 0 P 0 (1) Với S = 4, P = 3 u và v là nghiệm của phương trình: 2 y 1 y 4y 3 0 y 3
- u 1 u 3 Do đó ta có: v 3 v 1 4 18 5x 1 4 18 5x 3 Suy ra 4 4 64 5x 3 64 5x 1 18 5x 1 18 5x 81 64 5x 81 64 5x 1 17 63 x x thoả mãn (*) 5 5 (2) Với S = 4, P = 29 không tồn tại u và v Vậy phương trình đã cho có 2 nghiệm là: 17 x 1 5 63 x 2 5 Bài 16:Giải phương trình: x2 x 5 5 HD:ĐK: x 5 Pt x2 5 x 5 ; x 5 (*) Đặt x 5 t a x 5 t 2 2at a2 Chọn a = 0 ta được:t2 - 5 = x và kết hợp với (*) ta được hệ phương trình: x2 5 t từ đây ta sẽ tìm được nghiệm. 2 t 5 x 4x 9 Bài 17:Giải phương trình: 7x2 + 7x = (x 0) . 28 4x 9 4x 9 HD:Đặt t a t 2 2at a2 28 28 1 4x 9 1 1 Chọn a ta được: t 2 t 7t 2 7t x 2 28 4 2 1 7x2 7x t 2 Kết hợp với đầu bài ta được hệ phương trình: 1 7t 2 7t x 2 Giải hệ phương trình trên ta tìm được nghiệm. x 4x 1 Bài 18:Giải phương trình : 2 4x 1 x 1 HD: Điều kiện x 4 Áp dụng bất đẳng thức cô si ta có: x 4x 1 x 4x 1 2 2 . 4x 1 x 4x 1 x
- x 4x 1 Theo giả thiết dấu bằng xảy ra khi và chỉ khi: 4x 1 x x2 4x 1 0 (x 2)2 3 x 2 3 Dấu “=” xảy ra x 4x 1 x2 4x 1 0 x2 4x 4 3 0 (x 2)2 3 x 2 3 x 2 3 (Thoả mãn) Vậy : x 2 3 Bài 19:Giải phương trình : x 1 5x 1 3x 2 HD: Cách 1. điều kiện x ≥ 1 Với x ≥ 1 thì: Vế trái: x 1 5x 1 vế trái luôn âm Vế phải: ≥ 31x 2 vế phải luôn dương Vậy: phương trình đã cho vô nghiệm Cách 2. Với x ≥ 1, ta có: x 1 5x 1 3x 2 x 1 8x 3 2 (5x 1)(3x 2) 2 7x 2 (5x 1)(3x 2) Vế trái luôn là một số âm với x ≥ 1, vế phải dương với x ≥ 1 phương trình vô nghiệm Bài 20:Giải phương trình :3x2 6x 7 5x2 10x 14 4 2x x2 (1) 2 4 2 9 2 HD: Ta có (1) 3 x 2x 1 5 x 2x 1 (x 2x 1) 5 3 5 3(x 1)2 4 5(x 1)2 9 5 (x 1)2 Ta có: Vế trái ≥ 4 9 2 3 5 . Dấu “=” xảy ra x = –1 Vế phải ≤ 5. Dấu “=” xảy ra x = –1 Vậy: phương trình đã cho có một nghiệm x = –1 x 7 Bài 21:Giải phương trình : 8 2x2 2x 1 x 1 1 HD: điều kiện x ≥ 2 Dễ thấy x = 2 là một nghiệm của phương trình 1 6 – Nếu x 2 : VT = 1 8 8 3 . Mà: VP > 8 3 2 x 1 – Nếu x > 2: VP = 2x2 + 2x 1 > 2.22 + 3 = 8 3 . VT < 8 3 x 2 x 1 2 1 6 6 1 1 3 x 1 2 1 Vậy: phương trình đã cho có một nghiệm duy nhất là x = 2 Bài 22. Giải phương trình sau : 3x2 5x 1 x2 2 3 x2 x 1 x2 3x 4 HD:
- Ta nhận thấy : 3x2 5x 1 3x2 3x 3 2 x 2 v x2 2 x2 3x 4 3 x 2 2x 4 3x 6 Ta có thể trục căn thức 2 vế : 3x2 5x 1 3 x2 x 1 x2 2 x2 3x 4 Dể dàng nhận thấy x = 2 là nghiệm duy nhất của phương trình . Bài 23. Giải phương trình sau: x2 12 5 3x x2 5 5 HD: Để phương trình có nghiệm thì : x2 12 x2 5 3x 5 0 x 3 Ta nhận thấy : x = 2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng x 2 A x 0 , để thực hiện được điều đó ta phải nhóm , tách như sau : x2 4 x2 4 x2 12 4 3x 6 x2 5 3 3 x 2 x2 12 4 x2 5 3 x 2 x 1 x 2 3 0 x 2 x2 12 4 x2 5 3 x 2 x 2 5 Dễ dàng chứng minh được : 3 0, x x2 12 4 x2 5 3 3 Bài 24. Giải phương trình : 3 x2 1 x x3 1 HD :Đk x 1 Nhận thấy x = 3 là nghiệm của phương trình , nên ta biến đổi phương trình x 3 x2 3x 9 3 2 3 x 3 x 1 2 x 3 x 2 5 x 3 1 2 3 3 x2 1 23 x2 1 4 x 2 5 x 3 x 3 x2 3x 9 Ta chứng minh : 1 1 2 2 2 3 3 x2 1 2 3 x2 1 4 3 x2 1 1 3 x 2 5 Vậy pt có nghiệm duy nhất x = 3 Bài 25. Gi¶i ph¬ng tr×nh : x 4 (x +1)(5x2 - 6x - 6 ) = 0 Híng dÉn: Ph¬ng tr×nh trªn cã d¹ng x 4 5x2 (x +1) – 6 ( x+ 1)2 = 0 (5) NhËn thÊy x = -1 kh«ng ph¶i lµ nghiÖm cña ph¬ng tr×nh (5) nªn ta chia 2 vÕ cho ( x +1)2 ta ®îc: 2 x 2 x 2 + 5 - 6 = 0 x 1 x 1 x 2 §Æt ta ®îc X 2 + 5X – 6 = 0 x 1 DÔ dµng nhËn ®îc X 1 = 1 ; X 2 = -6 Sau ®ã gi¶i tiÕp t×m ®îc x
- III-BÀI TẬP VI-ÉT Bµi 1. Cho ph¬ng tr×nh bËc hai Èn x, tham sè m : x2 mx m 3 0 (1) a/ Gi¶i ph¬ng tr×nh víi m = - 2. 2 2 3 3 b/ Gäi x1; x2 lµ c¸c nghiÖm cña ph¬ng tr×nh. TÝnh x1 x2 ;x1 x2 theo m. 2 2 c/ T×m m ®Ó ph¬ng tr×nh cã hai nghiÖm x1; x2 tháa m·n : x1 x2 9 . d/ T×m m ®Ó ph¬ng tr×nh cã hai nghiÖm x1; x2 tháa m·n : 2x1 + 3x2 = 5. e/ T×m m ®Ó ph¬ng tr×nh cã nghiÖm x1 = - 3. TÝnh nghiÖm cßn l¹i. f/ T×m m ®Ó ph¬ng tr×nh cã hai nghiÖm tr¸i dÊu. g/ LËp hÖ thøc liªn hÖ gi÷a hai nghiÖm cña ph¬ng tr×nh kh«ng phô thuéc vµo gi¸ trÞ cña m. Gi¶i a/ Thay m = - 2 vµo ph¬ng tr×nh (1) ta cã ph¬ng tr×nh : x2 2x 1 0 (x 1)2 0 x 1 0 x 1 VËy víi m = - 2 ph¬ng tr×nh cã nghiÖm duy nhÊt x = 1. b/ Ph¬ng tr×nh : x2 mx m 3 0 (1) m2 4(m 3) m2 4m 12 Ph¬ng tr×nh cã nghiÖm x1;x2 0 x1 x2 m (a) Khi ®ã theo ®Þnh lý Vi-et, ta cã : x1x2 m 3 (b) 2 2 2 2 2 *) x1 x2 (x1 x2 ) 2x1x2 ( m) 2(m 3) m 2m 6 3 3 3 3 3 2 *) x1 x2 (x1 x2 ) 3x1x2 (x1 x2 ) ( m) 3(m 3)( m) m 3m 9m c/ Theo phÇn b : Ph¬ng tr×nh cã nghiÖm x1;x2 0 2 2 2 Khi ®ã x1 x2 m 2m 6 2 2 2 2 Do ®ã x1 x2 9 m 2m 6 9 m 2m 15 0 2 '(m) ( 1) 1.( 15) 1 15 16 0; (m) 4
- 1 4 1 4 => ph¬ng tr×nh cã hai nghiÖm : m 5;m 3 1 1 2 1 Thö l¹i : +) Víi m 5 7 0 => lo¹i. +) Víi m 3 9 0 => tháa m·n. 2 2 VËy víi m = - 3 th× ph¬ng tr×nh cã hai nghiÖm x1; x2 tháa m·n : x1 x2 9 . d/ Theo phÇn b : Ph¬ng tr×nh cã nghiÖm x1;x2 0 x1 x2 m (a) Khi ®ã theo ®Þnh lý Vi-et, ta cã : x1x2 m 3 (b) HÖ thøc : 2x1 + 3x2 = 5 (c) Tõ (a) vµ (c) ta cã hÖ ph¬ng tr×nh : x1 x2 m 3x1 3x2 3m x1 3m 5 x1 3m 5 2x1 3x2 5 2x1 3x2 5 x2 m x1 x2 2m 5 x1 3m 5 Thay vµo (b) ta cã ph¬ng tr×nh : x2 2m 5 ( 3m 5)(2m 5) m 3 6m2 15m 10m 25 m 3 6m2 26m 28 0 3m2 13m 14 0 2 (m) 13 4.3.14 1 0 => ph¬ng tr×nh cã hai nghiÖm ph©n biÖt : 13 1 m 2 1 2.3 13 1 7 m 2 2.3 3 Thö l¹i : +) Víi m 2 0 => tháa m·n. 7 25 +) Víi m 0 => tháa m·n. 3 9 7 VËy víi m 2;m ph¬ng tr×nh cã hai nghiÖm x1; x2 tháa m·n : 2x1 + 3x2 = 5. 3 e/ Ph¬ng tr×nh (1) cã nghiÖm 2 x1 3 ( 3) m.( 3) m 3 0 2m 12 0 m 6 Khi ®ã : x1 x2 m x2 m x1 x2 6 ( 3) x2 3 VËy víi m = 6 th× ph¬ng tr×nh cã nghiÖm x1 = x2 = - 3. f/ Ph¬ng tr×nh (1) cã hai nghiÖm tr¸i dÊu ac 0 1.(m 3) 0 m 3 0 m 3 VËy víi m < - 3 th× ph¬ng tr×nh cã hai nghiÖm tr¸i dÊu.
- g/ Gi¶ sö ph¬ng tr×nh cã hai nghiÖm x1; x2. Khi ®ã theo ®Þnh lÝ Vi-et, ta cã : x1 x2 m m x1 x2 x1 x2 x1x2 3 x1x2 m 3 m x1x2 3 Bµi 2. Cho phương trình : x2 2m 1 x m 0 Gọi x1 và x2 là các nghiệm của phương trình. Tìm m để : 2 2 A x1 x2 6x1x2 có giá trị nhỏ nhất. x1 x2 (2m 1) Bài giải: Theo VI-ÉT: x1x2 m A x2 x2 6x x x x 2 8x x Theo đ ề b ài : 1 2 1 2 1 2 1 2 2m 1 2 8m 4m2 12m 1 (2m 3)2 8 8 3 Suy ra: min A 8 2m 3 0 hay m 2 Bµi 3.Cho phương trình : x2 mx m 1 0 Gọi x1 và x2 là các nghiệm của phương trình. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức sau: 2x1x2 3 B 2 2 x1 x2 2 x1x2 1 x1 x2 m Ta có: Theo hệ thức VI-ÉT thì : x1x2 m 1 2x1x2 3 2x1x2 3 2(m 1) 3 2m 1 B 2 2 2 2 2 x1 x2 2 x1x2 1 (x1 x2 ) 2 m 2 m 2 Cách 1: Thêm bớt để đưa về dạng như phần (*) đã hướng dẫn Ta biến đổi B như sau: m2 2 m2 2m 1 m 1 2 B 1 m2 2 m2 2 2 2 m 1 Vì m 1 0 0 B 1 m2 2 Vậy max B=1 m = 1 Với cách thêm bớt khác ta lại có: 1 1 1 1 m2 2m 1 m2 m2 4m 4 m2 2 2 m 2 1 B 2 2 2 2 m2 2 m2 2 2 m2 2 2
- 2 2 m 2 1 Vì m 2 0 0 B 2 m2 2 2 1 Vậy min B m 2 2 Cách 2: Đưa về giải phương trình bậc 2 với ẩn là m và B là tham số, ta sẽ tìm điều kiện cho tham số B để phương trình đã cho luôn có nghiệm với mọi m. 2m 1 B Bm2 2m 2B 1 0 (Với m là ẩn, B là tham số) ( ) m2 2 Ta có: 1 B(2B 1) 1 2B2 B Để phương trình ( ) luôn có nghiệm với mọi m thì 0 hay 2B2 B 1 0 2B2 B 1 0 2B 1 B 1 0 1 B 2B 1 0 2 B 1 0 B 1 1 B 1 2B 1 0 1 2 B B 1 0 2 B 1 Vậy: max B=1 m = 1 1 min B m 2 2 Bµi 4 Cho phương trình 2x 2 m 3 x m 0 (1) với m là tham số. a) Giải phương trình khi m 2 . b) Chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m. Gọi x1 , x2 là các nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức sau: A = x1 x2 . Đáp án: a) Với m 2 phương trình trở thành 2x 2 5x 2 0 . 1 52 4.2.2 9 nên phương trình có hai nghiệm x 2 , x . 1 2 2 b) Phương trình có biệt thức m 3 2 4.2.m m 2 2m 9 m 1 2 8 0 với mọi m . m 3 x x 1 2 2 Do đó phương trình luôn có hai nghiệm x1 , x2 . Khi đó theo định lý Viet thì . m x x 1 2 2 2 2 2 m 3 m Biểu thức A = x1 x2 = x1 x2 = x1 x2 4x1 x2 = 4 = 2 2 1 1 m 2 2m 9 m 1 2 8 . 2 2 Do m 1 2 0 nên m 1 2 8 8 2 2 , suy ra A 2 . Dấu bằng xảy ra m 1 . Vậy giá trị nhỏ nhất của A là 2 , đạt được khi m 1 . Bµi 5
- Cho phương trình: x2 2(m 1)x 2m 0 (1) (với ẩn là x ). 1) Giải phương trình (1) khi m =1. 2) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi m . 3) Gọi hai nghiệm của phương trình (1) là x1 ; x2 . Tìm giá trị của m để x1 ; x2 là độ dài hai cạnh của một tam giác vuông có cạnh huyền bằng 12 . Giai Khi m = 1 ta có phương trình x2 – 4x + 2 = 0 Giải phương trình được x1 2 2 ; x2 2 2 Tính ' m2 1 Khẳng định phương trình luôn có hai nghiệm phân biệt 2m 2 0 Biện luận để phương trình có hai nghiệm dương m 0 2m 0 2 2 2 Theo giả thiết có x1 + x2 = 12 (x1 + x2) – 2x1x2 = 12 4(m 1)2 4m 12 m2 + m – 2 = 0 Giải phương trình được m = 1 ( thoả mãn), m = -2 (loại) 2 Bµi 6: Gi¶ sö x1 , x2 lµ hai nghiÖm cña ph¬ng tr×nh x ax 1 0 vµ x3 , x4 lµ nghiÖm cña ph¬ng tr×nh x 2 bx 1 0 . TÝnh gi¸ trÞ cña biÓu thøc: M = x1 x3 . x2 x3 . x1 x4 . x2 x4 theo a vµ b. Híng dÉn: Theo hÖ thøc ViÐt ta cã: x1 x2 a x3 x4 b vµ x1.x2 1 x3 .x4 1 Do ®ã x1 x3 . x2 x4 x1 x2 x1 x4 x2 x3 x3 x4 = 1 + x1 x4 x2 x3 1 = x1 x4 x2 x3 vµ x2 x3 . x1 x4 x1 x2 x2 x4 x1 x3 x3 x4 = 1 + x2 x4 x1 x3 1 = x2 x4 x1 x3 M = x1 x4 x2 x3 . x2 x4 x1 x3 2 2 2 2 M = x1 x2 x4 x1 x3 x4 x2 x3 x4 x1 x2 x3 2 2 2 2 M = x4 x1 x2 x3 2 2 2 2 M= x3 x4 x1 x2 2 2 M= x3 x4 2x3 x4 . x1 x2 2x1 x2 M= b 2 2 a 2 2 b 2 a 2 2 Bµi 7: T×m m ®Ó ph¬ng tr×nh x – mx + m = 0 cã nghiÖm x1 ; x2 tho¶ m·n x1 2 x2 Híng dÉn: m 0 Ph¬ng tr×nh ®· cho cã nghiÖm x1 ; x2 khi vµ chØ khi 0 m(m 4) 0 m 4
- x1 2 x2 (1) Ta cã: x1 2 x2 x1 2 x2 (2) TH1: x = -2 lµ mét gnhiÖm cña PT ®· cho nªn ta cã: (-2)2 – m(-2) + m = 0 4 4 + 3m = 0 m 3 c 4 2 Ta tÝnh nghiÖm cßn l¹i nhê vµo ®Þnh lÝ ViÐt nh sau: x .x m ( 2)x x 2 x 1 2 a 2 3 2 3 1 4 VËy m lµ gi¸ trÞ cÇn t×m 3 4 TH2: x 2 x (x 2)(x 2) 0 x x 2(x x ) 4 0 m 2m 4 0 m 1 2 1 2 1 2 1 2 3 4 KÕt hîp c¶ hai trêng hîp vµ ®èi chiÕu víi ®iÒu kiÖn cã nghiÖm th× m lµ c¸c gi¸ trÞ cÇn t×m. 3 Bµi 8: Víi gi¸ trÞ nµo cña m th× ph¬ng tr×nh x2 + x + m = 0 cã hai nghiÖm ®Òu lín h¬n m Híng dÉn : C¸ch 1: PT ®· cho cã 2 nghiÖm tho¶ m·n m x1 x2 khi vµ chØ khi 1 1 m m 4 0 0 4 1 4m 0 2 m 2 x1 m 0 (x1 m)(x2 m) 0 m 2m 0 m 2 x1x2 m(x1 x2 ) 0 m 0 x2 m 0 (x1 m) (x2 m) 0 1 2m 0 1 m 2 C¸ch 2: Tõ viÖc t×m m ®Ó ph¬ng tr×nh cã hai nghiÖm ®Òu lín h¬n m ta ®a vÒ t×m m ®Ó PT cã nghiÖm ®Òu d¬ng B»ng c¸ch: §Æt t = x – m x = t + m. PT ®· cho viÕt ®îc díi d¹ng lµ (t + m)2 + t + 2m = 0 t 2 + (2m+1)t + m2 + 2m = 0 (*) Bµi 9 Cho ph¬ng tr×nh m 4 .x 2 2 m 2 x m 1 0 . T×m m ®Ó ph¬ng tr×nh cã 2 nghiÖm x1 ; x2 tho¶ m·n : x1 0x2 vµ x1 x2 . Híng dÉn: V× x1 0 nªn x1 x1 do vËy x1 x2 x1 x2 hay S x1 x2 0 Do ®ã ph¬ng tr×nh ®· cho cã hai nghiÖm x1 ; x2 tho¶ m·n ®iÒu kiÖn bµi to¸n khi vµ chØ khi.
- m 4 0 a 0 2 m 4 m 2 m 4 m 1 0 x 0x 1 2 0 m 1 m0 0 2 m4 x1 x2 p0 m 4 1m4 s0 2 m 2 2m4 0 m 4 VËy gi¸ trÞ cÇn t×m cña m lµ: 2 m4