Tuyển tập đề thi vào Lớp 10 môn Toán (Có đáp án)
Bạn đang xem 20 trang mẫu của tài liệu "Tuyển tập đề thi vào Lớp 10 môn Toán (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- tuyen_tap_de_thi_vao_lop_10_mon_toan_co_dap_an.pdf
Nội dung text: Tuyển tập đề thi vào Lớp 10 môn Toán (Có đáp án)
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 01 Bài 1.(2điểm) − + 1 2 − 1 2 a) Thực hiện phép tính: : 72 1+ 2 1 − 2 b) Tìm các giá trị của m để hàm số y =()m −2 x + 3 đồng biến. Bài 2. (2điểm) a) Giải phương trình : x4−24 x 2 − 25 = 0 2x− y = 2 b) Giải hệ phương trình: 9x+ 8 y = 34 Bài 3. (2điểm) Cho phương trình ẩn x : x2 −5 x + m − 2 = 0 (1) a) Giải phương trình (1) khi m = −4 . b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1 ; x2 thoả 1 1 + = mãn hệ thức 2 3 x1x 2 Bài 4. (4điểm) Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của . tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = 4R . 3 a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF. b) Tính Cos DA B . BD DM c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh − = 1 DM AM d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R. HẾT Luyện thi THPT Quốc gia cùng Carot.vn 1
- BÀI GIẢI CHI TIẾT VÀ ĐÁP ÁN ĐỀ SỐ 01 A. BÀI GIẢI CHI TIẾT VÀ ĐÁP ÁN ĐỀ SỐ 01: BÀI GIẢI CHI TIẾT ĐIỂM Bài 1: (2điểm) − + 1 2− 1 2 a) Thực hiện phép tính: : 72 1+ 2 1 − 2 Carot.vn 2 2 ()1−2 −() 1 + 2 0,25 đ = : 36.2 (1+ 2)( 1 − 2 ) 1−2 2 + 2 − (1 + 2 2 + 2) = : 6cùng 2 0,25đ 1− 2 1−2 2 + 2 − 1 − 2 2 − 2) = gia: 6 2 0,25đ −1 c = 4 2= 2 6 2 3 ố 0,25đ m ≥ 0 b) Hàm số y=() m −2 x + 3 đồng biến ⇔ Qu m − 2 > 0 0,5đ m ≥ 0 ⇔ > m 2 {0,25đ m ≥ 0 THPT ⇔ m > 4 thi ⇔ m > 4 0,25đ Bài 2: (2 nđiể m) a)ệ Giải phương trình : x4 −24 x2 − 25 = 0 Đặt t = x2 ( t ≥ 0 ), ta được phương trình : t2 −24 t − 25 = 0 0,25đ 2 ∆' =b' − ac Luy = 122 –(–25) = 144 + 25 = 169 ⇒ ∆' = 13 0,25đ 2
- −b' + ∆' 12 + 13 −b' − ∆' 12 − 13 t = = = 25 (TMĐK), t = = = −1 1 a 1 2 a 1 0,25đ (loại) Do đó: x2 = 25 ⇒ x = ±5 . 0,25đ Tập nghiệm của phương trình : S ={ −5;5} 0,25đ 0,25đ 2x− y = 2 16x− 8 y = 16 b) Giải hệ phương trình: ⇔ + = + = 9x 8 y 34 9x 8 y 34 25x = 50 ⇔ 2x− y = 2 0,25đ x = 2 ⇔ 2.2− y = 2 Carot.vn x = 2 0,25đ ⇔ y = 2 Bài 3: PT: x2 −5 x + m −2 = 0 (1) a) Khi m = – 4 ta có phương trình: x2 – 5x – 6 = 0. cùng 0,25đ Phương trình có a – b + c = 1 – (– 5) + (– 6) = 0 c −6 đ ⇒ x= −1, x = − = − = 6 . 0,5 1 2 a 1 gia b) PT: x2 −5 x + m −2 = 0 (1) có hai nghiệcm dương phân biệt 0,25đ ∆ > 0 ⇔ + > ố x1 x2 0 > x1. x 2 0 Qu 0,25đ (−5)()2 −4m − 2 > 0 33 −() −5 33− 4m > 0 m 0 ⇔ ⇔ 4 ⇔2 2 4 m > 2 m −2 > 0 (*) THPT • thi1 + 1 = ⇔ + = 3 2 3 x2 x1 x1 x 2 x x 2 n 1 2 2 ệ 2 3 ⇔( x +x) = x x 2 1 2 1 2 0,25đ 9 ⇔ x +x +2 x x = x x Luy 1 2 1 24 1 2 9 ⇔5 +2m − 2 =( m − 2) 4 0,25đ 3
- Đặt t= m −2 () t ≥ 0 ta được phương trình ẩn t : 9t2 – 8t – 20 = 0 . 10 0,25đ Giải phương trình này ta được: t1 = 2 > 0 (nhận), t2 = − < 0 9 (loại) x D Vậy: m −2 = 2 ⇒ m = 6 ( thỏa mãn *) Bài 4. (4điểm) M - Vẽ hình 0,5 điểm) I N 0F,25đ a) Chứng minh tứ giác OBDF nội tiếp. { 0 ,25 đ Định tâm I đường tròn ngoại tiếp tứ OBDF. B O C A Ta có: DBO = 900 và DFO = 900 (tính chất tiếp tuyến) Tứ giác OBDF có DBO + DFO = 1800 nên nội tiếp được trong một đường tròn. Carot.vn0,25đ Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD 0,25đ b) Tính Cos D AB . Áp dụng định lí Pi-ta-go cho tam giác OFA vuôngcùng ở F ta được: 4R 2 5R OA =OF2 + AF2 =R 2 + = gia 3 3 0,25đ AF 4RR 5 c Cos FAO = =: = 0,8 ⇒ CosDAB = 0,8 0,25đ OA 3 3 ố BD DM c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh − = 1 Qu DM AM 0,25đ ∗ OM // BD ( cùng vuông góc BC) ⇒ M OD= BDO (so le trong) và B DO= ODM (tính chất hai tiếp tuyến cắt nhau) Suy ra: M DO= MOD . {0,25đ Vậy tam giác MDO cân ở M. Do đó: MD = MO ∗ Áp dụng hTHPTệ quả định lí Ta let vào tam giác ABD có OM // BD ta được: BDthi= AD hay BD= AD (vì MD = MO) OM AM DM AM n 0,25đ + ệ ⇒ BD= AM DM = 1 + DM DM AM AM 0,25đ BD DM Luy Do đó: − = 1 (đpcm) DM AM 0,25đ d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R. 4
- ∗Áp dụng hệ thức lượng cho tam giác OAM vuông ở O có OF ⊥ AM ta được: OF2 = MF. AF hay R2 = MF. 4R ⇒ MF = 3R 3 4 ∗ Áp dụng định lí pi ta go cho tam giác MFO vuông tại F ta được: 3R 2 5R 0,25đ OM = OF2 +MFR2 = 2 + = 4 4 OM AO OM. AB 5RRR 5 5 0,25đ ∗ OM // BD ⇒ = ⇒ BD = = .+R : = 2R BD AB OA 4 3 3 0,25đ Gọi S là diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) . Carot.vn S1 là diện tích hình thang OBDM. 0 S2 là diện tích hình quạt góc ở tâm BON = 90 Ta có: S = S1 – S2 . 1 1 5R 13R2 S =(OM + BD). OB = +2R .R = (đvdt) 1 2 2 4 8 cùng π R2.900π R 2 S = = (đvdt) 2 3600 4 13R2 π R2 R2 gia Vậy S = S1 – S2 = − = (13− 2π ) (đvdt) 8 4 8 c ốhết Lưu ý:Bài toán hình có nhiều cách giải .Có thể các em sẽ tìm nhiều cách giải hay hơn. Qu THPT thi n ệ Luy 5
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 02 Bài 1. ( 2điểm) Rút gọn các biểu thức sau: 3 + 5 + + − a) 15 b) 11() 3 1() 1 3 5 3 Bài 2. ( 1,5điểm) Giải các phương trình sau: a) x3 – 5x = 0 b) x −1 = 3 Carot.vn Bài 3. (2điểm) 2x+ my = 5 Cho hệ phương trình : ( I ) 3x− y = 0 a) Giải hệ phương trình khi m = 0 . cùng b) Tìm giá trị của m để hệ (I) có nghiệm ( x; y) thoả mãn hệ thức: m+1 x - y + = − 4 m-2 gia Bài 4. ( 4,5điểm). Cho tam giác ABC nhọn nội tiếp đường trònc tâm O đường kính AM=2R. Gọi H là trực tâm tam giác . ố a) Chứng minh tứ giác BHCM là hình bình hành. b) Gọi N là điểm đối xứng củQua M qua AB. Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn. c) Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N,H,E thẳng hàng. d) Giả sử AB = R 3 . Tính diện tích phần chung của đưòng tròn (O) và đường tròn THPTngoại tiếp tứ giác AHBN. HẾT thi n ệ Luy 6
- BÀI GIẢI CHI TIẾT ĐỀ SỐ 02 Bài 1: Rút gọn 3 + 5 3 + 5 + + − a) 15 = 15. 15. b) 11() 3 1() 1 3 = 5 3 5 3 11+( 12 − 32 ) 3 5 = 15.+ 15. = 11+( − 2) 5 3 = 9 + 25 Carot.vn= 9 = 3 + 5 = 8 = 3 Bài 2. Giải các phương trình sau: a) x3 – 5x = 0 b) x −1 = 3 (1) ⇔ x(x2 – 5) = 0 ĐK : x –1cùng ≥ 0 ⇔ x ≥ 1 ⇔ x (x − 5 )(x + 5 ) = 0 (1) ⇔ x – 1 = 9 ⇔ x1 = 0; x2 = 5 ; x3 = − 5 ⇔ x = 10 (TMĐK) Vậy: S = {0; 5;− 5} giaVậy: S = {10} Bài 3. c ố 2x = 5 x = 2,5x = 2,5 a) Khi m = 0 ta có hệ phương trình: ⇔ ⇔ 3x− y = 0 3.2,5 −y = 0 y = 7,5 2x + my = 5() 1 Qu b) . Từ (2) suy ra: y = 3x thay vào (1) ta được: 2x + 3mx = 5 3x− y = 0( 2) ⇔()3m +2 x = 5 2 5 15 ĐK: m ≠ − ⇒ x = . Do đó: y = 3 3m + 2 3m + 2 THPTm+1 5 15m + 1 x - y + = − 4 ⇔ − + = −4 (*) m-2 3m + 2 3m + 2 m − 2 2 Với m ≠thi− và m ≠ 2, (*) ⇔ −10()()()()()m − 2 +m + 1 3 m + 2 = − 4 m − 2 3 m + 2 3 n 2 Khaiệ triển, thu gọn phương trình trên ta được phương trình: 5m – 7m + 2 = 0 Do a + b + c = 5 + (– 7) + 2 =0 nên m1 = 1 (TMĐK), m2 = 0,4 (TMĐK) Bài 4: Luy a) Chứng minh tứ giác BHCM là hình bình hành. A ABM = 900 (góc nội tiếp chắn nửa đường tròn (O)) ⇒ BM⊥ AB K ⇒ ⊥ n H là trực tâm tam giác ABC CH AB m O H E = Do đó: BM // CH N / C B / = M 7
- Chứng minh tương tự ta được: BH // CM Vậy tứ giác BHCM là hình bình hành. b) Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn. ANB= AMB (do M và N đối xứng nhau qua AB) AMB= ACB (hai góc nội tiếp cùng chắn cung AB của đường tròn (O)) H là trực tâm tâm giác ABC nên AH ⊥ BC, BK ⊥ AC nên ACB= AHK (K = BH ∩ AC) A Do đó: ANB= AHK . K n Vậy tứ giác AHBN nội tiếp được trong một đường tròn. m O H E = Lưu ý: Có nhiều em HS giải như sau: N / C 0 Carot.vn= ABM = 90 (góc nội tiếp chắn nửa đường tròn (O)) B / M Suy ra: ABN = 900 (kề bù với ABM = 900 ) Tam giác MNE có BC là đường trung bình nên BC // ME, H là trực tâm tam giác ABC nên AH ⊥ BC. Vậy AH ⊥ NE ⇒ AHN = 900 cùng Hai đỉnh B và H cùng nhìn AN dưới một góc vuông nên AHBN là tứ giác nội tiếp. Có ý kiến gì cho lời giải trên ? gia c) Chứng minh ba điểm N,H,E thẳng hàng.c Tứ giác AHBN nội tiếp (câu b) ⇒ ố ABN= AHN . Mà ABN = 900 (do kề bù với ABM = 900 , góc nội tiếp chắn nửa đường tròn (O)) Qu Suy ra: AHN = 900 . Chúng minh tương tự tứ giác AHCE nội tiếp ⇒ AHE= ACE = 900 Từ đó: AHN + AHE = 1800 ⇒ N, H, E thẳng hàng. d) Giả sử AB = R 3 . Tính diện tích phần chung của đưòng tròn (O) và đường tròn THPTngoại tiếp tứ giác AHBN. 0 Do ABN = 90 ⇒ AN là đường kính đường tròn ngoại tiếp tứ giác AHBN. AM = thiAN (tính chất đối xứng) nên đường tròn (O) và đường tròn ngoại tiếp tứ giác AHBNn bằng nhau ⇒ Sviên phân AmB = Sviên phân AnB ệ π 2 0π 2 0 R .120 R ∗ AB = R 3 ⇒ AmB =120 ⇒ Squạt AOB = = 3600 3 Luy ∗ AmB =1200 ⇒ BM = 600 ⇒ BM= R 1 1 1 1 R2 3 O là trung điểm AM nên SAOB = S = . .AB . BM= . R 3. R = 2ABM 2 2 4 4 ∗ Sviên phân AmB = Squạt AOB – SAOB 8
- π R2 R2 3 = – K n 3 4 m O 2 H E = R N / = (4π − 3 3) C 12 B / = ∗ Diện tích phần chung cần tìm : M R2 R2 2. Sviên phân AmB = 2. (4π − 3 3) = (4π − 3 3) (đvdt) 12 6 HẾT Carot.vn cùng gia c ố Qu THPT thi n ệ Luy 9
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 3 Bài 1. (2,5điểm) 1. Rút gọn các biểu thức : 2 2 − − + + + 2 3 − a) M =()3 2() 3 2 b) P = 5 1 ( 5 1) 5− 1 2. Xác định hệ số a và b của hàm số y = ax + b biết đồ thị hàm số là đường thẳng song song với đường thẳng y = 2x và đi qua điểm A( 1002;2009). Bài 2.(2,0điểm) Cho hàm số y = x2 có đồ thị là Parabol (P) và đường thẳng (d): y =Carot.vn 2x + m . 1. Vẽ (P). 2. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B.Tính toạ độ giao điểm của (P) và (d) trong trường hợp m = 3. Bài 3. (1,5điểm). cùng Giải bài toán sau bằng cách lập phương trình: Tính độ dài hai cạnh góc vuông của một tam giác vuông nội tiếp đường tròn bán kính 6,5cm.Biết rằng hai cạnh gócgia vuông của tam giác hơn kém . nhau 7cm . c Bài 4.(4điểm) ố Cho tam giác ABC có BAC = 450 , các góc B và C đều nhọn. Đường tròn đường kính BC cắt AB và AC lần lượt tai D và E. Gọi H là giao điểm của CD và BE. Qu 1. Chứng minh AE = BE. 2. Chứng minh tứ giác ADHE nội tiếp. Xác định tâm K của đường tròn của đường tròn ngoại tiếp tứ giác ADHE. 3. Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE. 4. Cho BC =THPT 2a.Tính diện tích phân viên cung DE của đường tròn (O) theo a. thi HẾT n ệ BÀI GIẢI CHI TIẾT ĐỀ SỐ 03 Bài 1. Luy 1. Rút gọn các biểu thức : 2 2 − − + + + 2 3 − a)M = ()3 2() 3 2 b)P = 5 1 ( 5 1) 5− 1 10
- 2 3 = 3−2 6 + 2 −() 3 + 2 6 + 2 = ( 5+ 1)( 5 − 1) + .( 5 − 1) 5− 1 = 3−2 6 + 2 − 3 − 2 6 − 2 = 4 + 2 3 2 = −4 6 = ( 3 +1) = 3 +1 Hoặc có thể rút gọn M và P theo cách sau: 2 2 − − + + + 2 3 − M = ()3 2() 3 2 b)P = 5 1 ( 5 1) 5− 1 = ( 3 −2 + 3 + 2)( 3 − 2 − 3 − 2) = ()5 +1() 5 − 1 + 2 3 Carot.vn .( 5− 1) 5− 1 2 = 2 3.()− 2 2 = −4 6 = 4 + 2 3 = ( 3 +1) = 3 +1 cùng 2. Đồ thị hàm số y = ax + b song song với đường thẳng y = 2x ⇒ a = 2,b ≠ 0 Đồ thị hàm số y = ax + b đi qua A( 1002;2009) ⇒ 2009= 2.1002 + b ⇒ b = 5 (TMĐK) gia Bài 2. c 1. Vẽ (P): y = x2 ố Bảng giá trị tương ứng giữa x và y: x – 2 –1 0 Qu 1 2 y 4 1 0 1 4 (các em tự vẽ đồ thị) 2. Phương trình hoành độ giao điểm của (P) & (d): x2 = 2x + m ⇔ x2 – 2x – m = 0 ∆' =b'2 −THPTac = 1 + m (d) cắt (P) tại hai điểm phân biệt A và B ⇔ ∆' >0 ⇔ m + 1 > 0 ⇔ m > – 1 ∗ Khi mthi = 3 ⇒ ∆' = 4 ⇒ ∆' = 2 −b' + ∆' −b' − ∆' Lúcn đó: x = = 1 + 2 = 3 ; x = = 1 – 2 = – 1 ệ A a B a Suy ra: yA = 9 ; yB = 1 Vậy m = 3 (d) cắt (P) tại hai điểm phân biệt A(3; 9) và B( – 1; 1) LuyBài 3: Đường kính đường tròn ngoại tiếp tam giác vuông: 6,5 . 2 = 13 (cm) Gọi x (cm) là độ dài cạnh góc vuông nhỏ (ĐK: 0 < x < 13) Cạnh góc vuông lớn có độ dài là: x + 7 (cm) Áp dụng định lí Pi ta go ta có phương trình: 11
- (x + 7)2 + x2 = 132 Khai triển, thu gọn ta được phương trình: x2 + 7x – 60 = 0 Giải phương trình này ta được: x1 = 5 (nhận), x2 = – 12 < 0 (loại) Vậy độ dài hai cạnh góc vuông của tam giác vuông cần tìm là: 5cm và 12cm A Bài 4. 45° 1. Chứng minh AE = BE. = 0 Ta có: BEA = 90 (góc nội tiếp chắn nửa đường tròn đường kính BC) K 0 Suy ra: AEB = 90 = E = 0 Tam giác AEB vuông ở E có BAE 45 nên vuông cân. D Do đó: AE = BE (đpcm) H Carot.vnB 2. Chứng minh tứ giác ADHE nội tiếp. O BDC = 900 ⇒ ADH = 900 Tứ giác ADHE có ADH+ AEH =1800 nên nội tiếp được trong một đường tròn. Tâm K đường tròn ngoại tiếp tứ giác ADHE là trungcùng điểm AH. 3.Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE. 1 Tam giác AEH vuông ở E có K là trung điểm AH nên KE= KA= AH . gia 2 Vậy tam giác AKE cân ở K. Do đó: Kc AE = KEA ∆EOC cân ở O (vì OC = OE) ⇒ O ốCE= OEC H là trực tâm tam giác ABC nên AH ⊥ BC H AC+ ACO = 900 ⇒ AEK+ OEC = 900 Qu Do đó: K EO = 900 ⇒ OE⊥ KE Điểm K là tâm đường tròn ngoại tiếp tứ giác ADHE nên cũng là tâm đường tròn ngoại tam giác ADE. Vậy OE là tiếp tuyến đường tròn ngoại tiếp tam giác ADE. 4.Tính diện tích phân viên cung nhỏ DE của đường tròn đường kính BC theo a. THPT Ta có: D OE= 2. ABE = 2.450 = 900 ( cùng chắn cung DE của đường tròn (O)) thi π.a2.900π a 2 SquạtDOE = = . n 3600 4 1 1 2 ệ SDOE = OD. OE= a 2 2 π a2 a2 a 2 Diện tích viên phân cung DE : − =(π − 2) (đvdt) Luy 4 2 4 HẾT 12
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 4 Bài 1. ( 1,5điểm). x y− y x a) Rút gọn biểu thức : Q = với x ≥ 0 ; y ≥ 0 và x ≠ y x − y b)Tính giá trị của Q tại x = 26+ 1; y = 26− 1 Bài 2. (2điểm) . 1 Cho hàm số y = x2 có đồ thị là (P). 2 Carot.vn a) Vẽ (P). b) Trên (P) lấy hai điểm M và N có hoành độ lần lượt bằng –1 và 2. Viết phương trình đường thẳng MN. c) Tìm trên Oy điểm P sao cho MP + NP ngắn nhấtcùng. Bài 3 . (1,5điểm) . Cho phương trình : x2 – 2( m – 1)x + m – 3 = 0 a) Giải phương trình khi m = 0. gia b) Chứng minh rằng, với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt. c Bài 4. (4,5điểm) . ố Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC ( với B, C là hai tiếp điểm). Gọi H là giao đQuiểm của OA và BC. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Tính tích OH.OA theo R. c) Gọi E là hình chiếu của điểm C trên đường kính BD của đường tròn (O). Chứng minh H EB = H AB . d) AD cắt CE THPTtại K. Chứng minh K là trung điểm của CE. e) Tính theo R diện tích hình giới hạn bởi hai tiếp tuyến AB, AC và cung nhỏ BC của đường tròn(O) trong trường hợp OA = 2R. Bài 5: (0,5điểthim) Tìmn các giá trị của m để hàm số y = ()m2 −3 m +2 x + 5 là hàm số nghịch biến ệtrên R . HẾT Luy 13
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 05 Bài 1. (1,5điểm). x x +1 Cho biểu thức : P = − x ( với x ≥ 0 ) x +1 a) Rút gọn biểu thức P. 5 b) Tính giá trị của P tại x thoả mãn x2 − x −(6 +2 5) = 0 5− 2 Carot.vn Bài 2. (2điểm). x +my = 4 Cho hệ phương trình: mx− y = 3 a) Tìm m để hệ có nghiệm (x; y) thoả mãn x cùng> 0 và y > 0. b) Tìm m để hai đường thẳng biểu diễn hai phương trình của hệ 1 cùng cắt nhau tại một điểm trên (P): y = x2 có hoành độ là 2. gia 4 Bài 3. (1,5điểm). Cho phương trình ẩn x: x2 – 3x –m2 +c m + 2 = 0 a) Tìm điều kiện cho m để phốương trình luôn có hai nghiệm phân biệt x1 ; x2 . b) Tìm các giá trị của mQu sao cho hai nghiệm x1; x2 của phương trình 3 3 thoả mãn x1 + x2 = 9. Bài 4. (2điểm). Cho đường tròn (O;R), S là điểm sao cho OS = 2R. Vẽ cát tuyến SCD tới đường tròn (O). Cho biết CD = R 3 . Tính SC và SDTHPT theo R. Bài 5. (3đđiểm). Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC ( với B, C làthi hai ti ếp điểm). Gọi H là giao điểm của OA và BC. Gọi E là hình chinếu của điểm C trên đường kính BD của đường tròn (O). ệ a) Chứng minh H EB = H AB . b) AD cắt CE tại K. Chứng minh K là trung điểm của CE. c) Tính theo R diện tích hình giới hạn bởi hai tiếp tuyến AB, AC và cung Luy nhỏ BC của đường tròn(O) trong trường hợp OA = 2R. HẾT 14
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 06 Bài 1.(1,5điểm) Cho phương trình: 2x2 + 5x – 8 = 0 a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1 ; x2 . b) Không giải phương trình, hãy tính giá trị biểu thức: A = 2 + 2 x1 x2 Bài 2. (1,5điểm) + + − Cho biểu thức : P = a4 a4+ 4 a ( Với a ≥ 0 ; a ≠ 4 ) Carot.vn a +2 2 − a a) Rút gọn biểu thức P. b) Tính P tại a thoả mãn điều kiện a2 – 7a + 12 = 0 Bài 3. ( 2điểm) cùng x 3 = a) Giải hệ phương trình: y 2 3x− 2 y = 5 gia b) Xác định hệ số a và b của hàm số y =c ax + b biết đồ thị của nó là đường thẳng (d) song song với đường thốẳng y = x + 2 và chắn trên hai trục toạ độ một tam giác có diện tích bằng 2. Bài 4.( 5điểm) Cho đường tròn (O;R) , đườnQug kính AD, B là điểm chính giữa của nửa đường tròn, C là điểm trên cung AD không chứa điểm B (C khác A và D) sao cho tam giác ABC nhọn a) Chứng minh tam giác ABD vuông cân. b) Kẻ AM ⊥ BC, BN ⊥ AC. Chứng minh tứ giác ABMN nội tiếp . Xác địnhTHPT tâm I đường tròn ngoại tiếp tứ giác ABMN. c) Chứng minh điểm O thuộc đường tròn (I). d) Chthiứng minh MN luôn tiếp xúc với một đường tròn cố định. e) Tính diện tích viên phân cung nhỏ MN của đường tròn (I) theo R. n HẾT ệ Luy 15
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 07 Bài 1.(1,5điểm) a) Không dùng bảng số hay máy tính, hãy so sánh hai số a và b với : a = 3 + 7 ; b = 19 b) Cho hai biểu thức : Carot.vn 2 ()x +y − 4 xy x y+ y x A = ; B = với x > 0; y > 0 ; x ≠ y x − y xy Tính A.B Bài 2.(1điểm) cùng Cho hàm số y = (m2 – 2m + 3)x + 4 có đồ thị là đường thẳng (d). a) Chứng tỏ rằng hàm số luôn đồng biến với mọi giá trị m b) Chứng tỏ rằng khi m thay đổi các đườnggia thẳng (d) luôn đi qua một điểm cố định. c Bài 3. (1điểm) ố Tìm hai số tự nhiên biết hiệu của chúng bằng 2 và hiệu các bình phương của chúng bằng 36. Bài 4. (2điểm) Qu Cho phương trình: (m + 1)x2–2( m – 1)x + m – 2 = 0 a) Xác định m để phương trình có hai nghiệm phân biệt. b) Xác định m để phương trình có một nghiệm bằng 2. Tính nghiệm còn lại c) Xác định mTHPT để phương trình có hai nghiệm x1; x2 thoả mãn hệ thức: 1 +1 = 7 . x1 x2 4 Bài 5.(4.5đ) thi Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn n( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại Dệ và E ( D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . Luy a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của B HC c) Chứng minh : 2 =1 + 1 . AK AD AE 16
- d) Đường thẳng kẻ qua D vuông góc OB cắt BE tại F, cắt BC ở I. Chứng minh ID = IF. HẾT Carot.vn TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN cùng ĐỀ SỐ 08 Bài 1. (2điểm) gia Giải các phương trình và hệ phương trìnhc sau: 4x+5y = 2 ố a) xy 20x− 30 y + xy = 0 Qu b) 4x+2 x − 1 = 5 Bài 2. ( 2điểm) ax-y=2 Cho hệ phương trình: x+ay=3 a) Giải hệ khiTHPT a = 3 b) Tìm a để hệ có nghiệm (x; y) thoả mãn điều kiện x−2 y = 0 Bài 3.(2điểm).thi Cho phương trình: 5x2 + 2mx – 3m = 0 a) nGi ải phương trình khi m = 1. ệb) Tìm m để phương trình có nghiệm kép. Tính nghiệm kép của phương trình với các giá trị của m tìm được Bài 4.(4điểm) Luy Cho đường tròn (O;R) đường kính AB. M là điểm di động trên một nửa đường tròn sao cho M A≤ MB , phân giác góc AMB cắt đường tròn tại điểm E khác điểm M. 17
- a) Tính độ dài cung nhỏ AE, BE theo R. b) Trên dây MB lấy điểm C sao cho MC = MA. Đường thẳng kẻ qua C và vuông góc MB cắt ME ở D. Phân giác góc MAB cắt ME ở I. Chứng minh tứ giác AICB nội tiếp. c) Chứng minh đường thẳng CD luôn đi qua qua một điểm cố định gọi đó là điểm F. d) Tính diện tích hình giới hạn bởi hai đoạn thẳng AF, EF và cung nhỏ AE của đường tròn (O) theo R. Hết Carot.vn cùng gia c ĐỀ THI VÀOố LỚP 10 MÔN TOÁN QuĐỀ SỐ 09 Bài 1. (1,5điểm) Giải hệ phương trình và hệ phương trình sau: y2 +2 x −8 =y − 3 a) y THPT x+ y =10 b) x(x + 2 5 ) – 1 = 0 Bài 2.(1,5điểmthi) + a) nCh ứng minh đẳng thức : a −b = a b với a; b ≥ 0 và a ≠ b. ệ a− b a + b a− b b) Cho hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) có đồ thị là hai đường thẳng (d) và (d1). Chứng tỏ (d) và (d1) cắt nhau với mọi giá trị m. Luy Với những giá trị nào của m thì (d) và (d1) cắt nhau tại một điểm trên trục tung. Bài 3.(2điểm) 18
- Cho phương trình : x2 – 2(m – 1)x + m – 3 = 0 ( x là ẩn số của phưng trình) a) Chứng minh phương trình luôn có nghiệm vói mọi m. b) Xác định giá trị của m sao cho phương trình có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau. Bài 4.(5điểm) Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp. b)Kẻ đường kính AK của đường tròn (O). Chứng minh AK ⊥ EF. c) Chứng minh H là tâm đường tròn nội tiếp tam giác FED. d) Cho biết CH = AB. Tính tỉ số EC . BC Carot.vn HẾT cùng gia c ố Qu MÔN TOÁN ĐỀ SỐ 10 Bài 1.(1,5điểm) THPT 1 2 a) Rút gọn biểu thức: +(2 + 3) thi 2+ 3 + b) nCho hàm số: y = x 2 ệ x −1 Tìm x để y xác định được giá trị rồi tính f ()4 + 2 3 . Bài 2.(1,5điểm) Luy Cho hàm số: y = (m – 1)x + 2m – 3. a) Tìm m để hàm số đồng biến. b) Vẽ đồ thị hàm số khi m = 2. 19
- c) Chứng tỏ rằng khi m thay đổi đồ thị hàm số luôn đi qua một điểm cố định. Bài 3.(2điểm) Giải các phương trình và hệ phương trình sau: 4x2− 2 y = 6 a) 3x 2+ 2 y = 8 b) (x2 – 2)(x2 + 2) = 3x2 Bài 4.(5điểm) Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD. a) Tính độ dài AH, BH, CD theo R. Carot.vn b) Gọi K là trung điểm của BC. Chứng minh tứ giác HOKC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác HOKC. c)Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh DK đi qua trung điểm của EB cùng d)Tính diện tích viên phân cung HOK của đường tròn (I) theo R. HẾT gia c ố Qu MÔN TOÁN THPT ĐỀ SỐ 11 Bài 1.(1,5điểm) Rút gọnthi các biểu thức sau: 1 a)n 18x − 32x : 18 x (với x > 0 ) ệ 3 ()2 +1 2 − 1 b) 2+ 1 LuyBài 2.(2điểm) a)Xác định hệ số a và b của hàm số y = ax + b biết đồ thị hàm số là một đường thẳng song song với đưòng thẳng y = 2x và đi qua điểm A(1; –2). 20
- b) Bằng phép tính tìm toạ độ giao điểm của (P): y = – 2x2 với đường thẳng tìm được ở câu a . Bài 3. (2điểm) Cho phương trình : x2 –(2m + 3)x + m = 0. a) Tìm m để phương trình có một nghiệm bằng – 1. Tính nghiệm còn lại của phương trình. b) Chứng tỏ rằng phương trình luôn có hai nghiệm phân biệt với mọi m. 2 c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị của m để x1 + 2 x2 có giá trị nhỏ nhất. Bài 4.(4,5điểm) Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), đườCarot.vnng cao AH. D là điểm nằm giữa hai điểm A và H. Đường tròn đường kính AD cắt AB, AC lần lượt tại M và N khác A. a) Chứng minh MN < AD và A BC= ADM ; b) Chứng minh tứ giác BMNC nội tiếp. cùng c) Đường tròn đường kính AD cắt đường tròn (O) tại điểm thứ hai E. Tia AE cắt đường thẳng BC tại K. Chứng minh ba điểm K, M, N thẳng hàng. d) Đường thẳng AH cắt MN tại I, cắt đườngiag tròn (O) tại F khác điểm A. Chứng minh AD. AH = AI. AF c HốẾT. Qu THPT thi n ệ Luy 21
- MÔN TOÁN ĐỀ SỐ 12 Bài 1. + − x 2 +x + 1x 1 ≥ ≠ Cho biểu thức: P = : (với x 0;x 1) x x−1 x + x + 1 1 − x 2 a) Rút gọn biểu thức P. b)Tìm giá trị của x để P = 2 3 Bài 2. Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d): y = mx + 1 và (P) : y = x2. a) Vẽ Parabol (P) và đường thẳng (d) khi m = 1. Carot.vn b) Chứng minh rằng với mọi của tham số m, đường thẳng (d) luôn đi qua một điểm cố định và luôn cắt (P) tại hai điểm phân biệt A và B. Bài 3. Cho mảnh đất hình chữ nhật có diện tích 360m2. Nếcùngu tăng chiề u rộng 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi. Tính chu vi mảnh đất lúc ban đầu. gia Bài 4. c Cho tam giác ABC nội tiếp đường trònố (O). D và E theo thứ tự là điểm chính giữa của các cung AB và AC. Gọi giao điểm của DE với AB, AC theo thứ tự là H và K. a) Chứng minh tam giác AHKQu cân. b) Gọi I là giao điểm của của BE và CD. Chứng minh AI ⊥ DE. c) Chứng minh tứ giác CEKI là tứ giác nội tiếp. d) Chứng minh IK // AB. THPT HẾT thi n ệ Luy 22
- MÔN TOÁN ĐỀ SỐ 13. Bài 1.Thu gọn các biểu thức sau: − a) A = 15 12− 1 5− 2 2 − 3 − + a2 − a 2− 4 ≠ b) B = a (với a>0 , a 4) a+2 a − 2 a Bài 2.Giải hệ phương trình và phương trình sau: Carot.vn x + y = 3 a) 2 x − y = 3 cùng b) 1 + 2= 5 x −1x + 1 3 Bài 3. Cho hàm số y = ax2 có đồ thị là một parabolgia đi qua A(– 4; – 8). a)Tìm a . Vẽ đồ thị hàm số tìm đượcc. b)Trên (P) tìm được ở câu a lấy đốiểm B có hoành độ bằng 2. Viết phương trình đường thẳng AB. c) Tìm điểm M trên Oy sao cho AM + MB ngắn nhất. Bài 4. Cho đường tròn (O), điểm AQu nằm ngoài đường tròn. Vẽ các tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm O. Gọi H là trung điểm của DE. a) Chứng minh các điểm A, B , H, O, C cùng thuộc một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC. c) Gọi I làTHPT giao điểm củ a BC và DE. Chứng minh AB2 = AI. AH d) BH cắt đường tròn (O) ở K. Chứng minh AE//CK. Bài 5.Cho phthiương trình : x4 −2() m +1 x2 + 4 m = 0 Tìm các giá trị của m để phương trình đã cho có 4 nghiệm phân biệt. n HẾT ệ Luy 23
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 14 Bài 1 . a) Cho hàm số y = (1 – m)x + 4. Tìm m để đồ thị hàm số đi qua điểm (– 3; 10) . Vẽ đồ thị hàm số ứng với m tìm được. x = 2y b)Giải hệ phương trình sau: x −y = −3 Bài 2. Cho biểu thức : Carot.vn x2 +x2 x + x P = − +1 với x > 0 x −x +1 x a) Rút gọn biểu thức P. b) Tìm x để P = 2. cùng c) Tìm giá trị nhỏ nhất của P. Bài 3. Cho phương trình ẩn x: x2 – 5x + 7 – m = 0 gia Tìm các giá trị của m để phương trìnhc có hai nghiệm x1 ; x2 thoả mãn 2 đẳng thức x1 = 4x2 + 1 ố Bài 4. Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác Qu A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N. a) Chứng minh AOME và BOMN là các tứ giác nội tiếp. b) Chứng minh AE. BN = R2 . c) Kẻ MH vuôngTHPT góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK⊥ MN . d) Githiả sử M AB = α và MB < MA. Tính diện tích phần tứ giác BOMH ở bên n ngoài nửa đường tròn (O) theo R và α . ệ e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường Luy tròn (O) . HẾT 24
- MÔN TOÁN ĐỀ SỐ 15 Bài 1. (1,5điểm) + − +x x − x x ≥ ≠ Cho biểu thức: M = 1 1 với x 0, x 1 x +1 x − 1 a) Thu gọn biểu thức M. b) Tính M tại x = −3 + 2 3 Bài 2. (2điểm) 2 Cho parabol (P) : y = x và đường thẳng (d): y = mx + 1 . 2 2 a) Vẽ (P) . Carot.vn b) Chứng tỏ rằng với mọi m đường thẳng (d) luôn đi qua một điểm cố định. c) Chứng minh rằng với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt. Bài 3. (1,5điểm) cùng Một miếng đất hình chữ nhật có chiều rộng bằng 2 chiều dài và có diện tích 5 bằng 360m2 . Tính chu vi của miếng đất . Bài 4. (4điểm) gia Cho ba điểm A, B, C thẳng hàng ( B nằcm giữa A và C). Vẽ đường tròn tâm O ố đường kính BC ; AM là tiếp tuyến vẽ từ A. Từ tiếp điểm M vẽ đường thẳng vuông góc với BC , đường thẳng này cắt BC tại H và cắt đường tròn (O) tại N. Qu a) Chứng minh tứ giác AMON nội tiếp . 2 b) Chứng minh OH.OA = BC 4 c) Từ B kẻ đường thẳng song song MC , đường thẳng này cắt AM ở D THPT và cắt MN tại E. Chứng minh tam giác MDE cân. d)thi Chứ ng minh HB= AB HC AC Bài 5. (1đniểm ) ệ x − y= m Xác định m để hệ phương trình có nghiệm duy nhất. x2 + y2 =1 Luy 25
- ĐỀ THI SỐ 16 SỞ GIÁO DỤC- ĐÀO TẠO KỲ THI THỬ TUYỂN SINH VÀO LỚP 10 QUẢNG NAM Năm học: 2009 – 2010 – MÔN TOÁN Thời gian làm bài: 120phút(không kể thời gian phát đề) ĐỀ THI THỬ Bài 1. (1,5điểm) 1. Không dùng máy tính bỏ túi , tính giá trị của biểu thức: − A = 3 2 3+ 6 3 3+ 3 1 1 x −1 2. a) Rút gọn biểu thức : B = − : ( x > 0Carot.vn và x ≠ 1) x +x x +1 x + 2 x + 1 b) Tìm x khi B = – 3 Bài 2. (2,5điểm) 1. Giải các phương trình và hệ phương trình sau: a) x2 − 2 3 x + 2 = 0 cùng −1 3 x+ y = 5 b) 5 2 gia x−2 y = 5 2. Khoảng cách giữa hai bến sông A vàc B là 60km. Một xuồng máy đi xuôi dòng từ bến A đến bến B, nghỉ 30phútố tại bến B rồi quay trở lại đi ngược dòng 25km để đến bến C. Thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8giờ. TínhQu vận tốc xuồng máy khi nước yên lặng , biết rằng vận tốc nước chảy là 1km/giờ. Bài 3. (2,5điểm) 1. Cho phương trình bậc hai : x2 + 4x + m +1 = 0 (1) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn x x 10 1 +2 = THPT x2 x 1 3 1 2. Cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương thi 4 ntrình : y =x + m . Xác định m để (d) tiếp xúc với (p) và tìm toạ độ giao điểm. ệ Bài 4.( 4 điểm ) Cho tam giác ABC có ba góc nhọn ( AB < AC ). Đường tròn đường kính LuyBC cắt AB, AC theo thứ tự tạiE và F. Biết BF cắt CE tại H và AH cắt BC tại D. 1. Chứng minh tứ giác AEHF nội tiếp và AH vuông góc với BC. 2. Chứng minh AE.AB =AF.AC 26
- 3. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm của BC .Tính tỉ số OK khi tứ giác OHBC nội tiếp . BC 4.Cho HF = 3cm, HB = 4cm, CE = 8cm và HC >HE. Tính HC. ===Hết=== ĐỀ THI SỐ 17 Carot.vn TRƯỜNG TH CS KỲ THI THỬ TUYỂN SINH VÀO LỚP 10- PTTH NGUYỄN BÁ NGỌC Năm học: 2009 – 2010 – MÔN TOÁN Thời gian làm bài: 90phút (không kể thời gian phát đề) cùng ĐỀ THI THỬ Bài 1. (2điểm) gia 1. Không xử dụng máy tính bỏ túi , tínhc giá trị của biểu thức sau: A = 11+() 3ố + 1() 1 − 3 + + − 2. Cho biểu thức : P = a4 a4+ a 4 ( Với a ≥ 0 ; a ≠ 4 ) a+Qu2 a − 2 a) Rút gọn biểu thức P. b) Tính P tại a thoả mãn điều kiện a2 – 7a + 12 = 0 Bài 2.(2điểm) 3x+ 2 y = − 10 1. Giải hệ phương trình: THPT x− 2 y = 2 2. Giải phương trình : x3 + 5x2 – 6x = 0 Bài 3. (1,5điểthim) 2 Chon parabol (P) : y = x và đường thẳng (d): y = mx + 1 . ệ 2 2 a)Vẽ (P) . b)Chứng tỏ rằng với mọi m đường thẳng (d) luôn đi qua một điểm cố định. Luy c) Chứng minh rằng với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt. Bài 4. (4,5điểm) Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm 27
- cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N. a) Chứng minh AOME nội tiếp và tam giác EON là tam giác vuông. b) Chứng minh AE. BN = R2 . c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK⊥ MN . d) Giả sử MAB = 300 . Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R . HẾT Carot.vn cùng TUYỂN TẬP ĐỀ THI VÀOgia L ỚP 10 MÔN TOÁNc ĐỀố SỐ 18 Bài 1.(1,5điểm) 2 1. Rút gọn : ( 7 −4) − 28Qu − x+ x x 4 2. Cho biểu thức : P = . với x > 0 và x ≠ 4 x −2 x + 2 4 x a) Rút gọn P. b) Tìm x để P > 3 Bài 2. (2điểm) THPT 4x+ y = 1 1. Giải hệ phương trình: thi 2x− 7 y = 8 1 −3 2. nGi ải phương trình: + = 2 ệ x −2x − 6 Bài 3. (1,5điểm) Cho phương trình: 2x2 – 5x + 1 = 0. ∆ Luy 1.Tính biệt số rồi suy ra phương trình có hai nghiệm phân biệt x1, x2. + 2.Không giải phương trình hãy tính x1 x2 x 2 x 1 Bài 4. (4,5điểm) 28
- Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Kẻ tiếp tuyến chung ngoài EF (E ∈ (O1) và F∈(O2), EF và điểm B nằm cùng phía nửa mặt phẳng bờ O1O2) Qua A kẻ cát tuyến song song với EF cắt đường tròn (O1) và (O2) theo thứ tự tại C và D. Đường thẳng CE và DF cắt nhau tại I. 1. Chứng minh tứ giác IEBF là tứ giác nội tiếp. 2. Chứng minh tam giác CAE cân và IA vuông góc với CD. 3. Chứng minh đường thẳng AB đi qua trung điểm của EF. 4. Cho biết R1 = 2,67cm ; R2 = 1,97cm ; O1O2 = 4,04cm. Tính độ dài EF (kết quả làm tròn tới hai chữ số thập phân) Carot.vn Bài 5. (0,5điểm). 2 Cho hàm số y = (– m + 2m + 3)x + 1 có đồ thị là đường thẳng (d1) và đường thẳng (d2): y = 5x. Chứng tỏ rằng với mọi m , (d1) và (d2) cắt nhau. ≈ HẾT≈ cùng gia c ố Qu TUYỂN TẬP ĐỀ THI VÀO LỚP 10 THPT MÔN TOÁN ĐỀ SỐ 19 Bài 1. ( 1,5đithiểm). 1 2 1. Thnự c hiện phép tính : + (15+ 2 6) ệ 5− 2 6 5 + 2 6 x2 y− xy2 x + y 2. a) Rút gọn biểu thức : Q = : với x > 0 ; y > 0 và x ≠ y xy x − y Luy b)Tính giá trị của Q tại x = 6 + 2 5 ; y = 5 Bài 2. (2điểm) . Cho hàm số y = ax2 có đồ thị là (P). 29
- a) Tìm a biết (P) đi qua điểm (– 4 ; – 4). Vẽ (P) với a tìm được. b) Trên (P) lấy hai điểm A và B có hoành độ lần lượt bằng –1 và 2. Viết phương trình đường thẳng AB. c)Viết phương trình đường thẳng song song với AB và tiếp xúc với (P) tìm được ở câu a. Bài 3 . (1,5điểm) . Cho phương trình : x2 – 2( m – 1)x + m – 3 = 0 (1) a) Giải phương trình (1) khi m = 0. b) Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu mà nghiệm dương có giá trị tuyệt đối lớn hơn. Bài 4. (4,5điểm) . Carot.vn Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC ( với B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. Tính tích OH.OA theo R. b) Gọi E là hình chiếu của điểm C trên đường kính cùngBD của đườ ng tròn (O). Chứng minh H EB = H AB . c) AD cắt CE tại K. Chứng minh K là trung điểm của CE. d) Tính theo R diện tích hình giới hạn bởi haigia tiếp tuyến AB, AC và cung nhỏ BC của đường tròn(O) trong trường hợp OA = 2R. Bài 5. (0,5điểm). c 2 Cho hàm số y = (– m + 2m + 3)x + ố1 có đồ thị là đường thẳng (d1) và đường thẳng (d2): y = 5x. Chứng tỏ rằng với mọi m , (d1) và (d2) cắt nhau. Qu ≈ HẾT≈ THPT thi n ệ TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN Luy ĐỀ SỐ 20 Bài 1.(1,5điểm) 30
- 2 3 1. Rút gọn biểu thức: A = + − 5 5− 3 6 + 3 − + (1− a)2 =a2 − a 2 2. Cho biểu thức: P = A . với a > 0 , a ≠ 1 a −1 a+2 a + 1 2 a) Rút gọn A. b) Tìm các giá trị của a để A > 0. Bài 2. (1,5điểm) y 2x + = −2 3 1. Giải hệ phương trình: 3x − 21 −y = 2 4 2. Giải phương trình: x3 – 4x + 3 = 0 Carot.vn Bài 3.(1,5điểm) Một ca nô xuôi một khúc sông dài 50km, rồi ngược dòng trở lại 32km hết tất cả 4giờ 30phút. cùng Tính vận tốc dòng nước biết vận tốc thực của ca nô là 18km/giờ. Bài 4. (2điểm) 1. Cho phương trình 3x2 – 5x – 4 = 0. (1) gia 3 3 Không giải phương trình hãy tính giác tr ị của biểu thức A = x1 x2 + x1x2 . Với x1, x2 là hai nghiệm của phươống trình (1) − 2 2. Trong mặt phẳng toạ độ Oxy cho Parabol (P) có phương trình y = x . 2 Gọi (d) là đường thẳng đi Ququa điểm M(0;– 2) và có hệ số góc k. Chứng tỏ (d) luôn cắt (P) tại hai điểm phân biệt khi k thay đổi. Bài 5. (3,5điểm) Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD. THPT a) Tính độ dài AH, BH, CD theo R. b)Gthiọi K là trung điểm của BC. Chứng minh tứ giác HOKC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác HOKC. n c)Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh ệ DK đi qua trung điểm của EB d)Tính diện tích viên phân cung HOK của đường tròn (I) theo R. Luy HẾT 31
- TUYỂN TẬP ĐỀ THI VÀO LỚP 10 MÔN TOÁN ĐỀ SỐ 21 Bài 1. (1,5điểm) 1. Không dùng máy tính bỏ túi, hãy tính giá trị biểu thức: 3 14 4 A = + − ( 8+ 2) 2+ 1 2 2 − 1 2 − 2 + − + a2 − a2 a 1 2. Cho biểu thức : Q = với a > 0 ; a ≠ 1. a+2 a + 1 a −1 a Carot.vn a) Rút gọn biểu thức Q. b) Chứng tỏ rằng với mọi giá trị 0 <a < 1 thì Q < 0. Bài 2. (2điểm) 2x + my = 5 Cho hệ phương trình : ( I ) cùng 3x− y = 0 a) Giải hệ phương trình khi m = – 2 . b) Tìm giá trị của m để hệ (I) có nghiệgiam ( x; y) thoả mãn hệ thức: m+1 x - y + = − 4 m-2 c Bài 3. (2điểm) ố Cho phương trình ẩn x : x2 −5 x + m −2 = 0 (1) a) Giải phương trình (1) Qukhi m = −4 . b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1 ; x2 thoả 1 1 + = mãn hệ thức 2 3 x1 x2 Bài 4. (4,5điểm) THPT Cho đường tròn (O;R) hai đường kính AB và CD. Tiếp tuyến tại B của đường thitròn (O) cắt các tia AD, AC lần lượt tại E và F. Phân giác góc FAB cắt đường tròn (O) tại N. Tia BN cắt đường thẳng AF ở M. a) nCh ứng minh EDCF là một tứ giác nội tiếp. ệb) Chứng minh tam giác MCN cân. c) Chứng minh đường thẳng ON đi qua trung điểm của đoạn thẳng BF d) Tính diện tích hình giới hạn bởi các đoạn thẳng BF, CF và cung nhỏ BC Luy trong trường hợp CD vuông góc AB. HẾT 32