Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng

doc 1 trang dichphong 6540
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_mon_toan_lop_9_nam_hoc_2012_2013_s.doc

Nội dung text: Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng

  1. SỞ GIÁO DỤC VÀ ĐÀO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 TẠO NĂM HỌC 2012 – 2013 TP. ĐÀ NẴNG MÔN THI: TOÁN – LỚP 9 THCS (Thời gian làm bài 150 phút không kể thời gian giao đề) Đề thi chính thức Bài 1. (2,5 điểm) Cho biểu thức với a/ Rút gọn biểu thức với b/ Tìm tất cả các giá trị sao cho P là một số nguyên tố. Bài 2. (2,0 điểm) a/ Tìm x, biết: b/ Giải hệ phương trình: Bài 3. (2,0 điểm) a/ Cho hàm số bậc nhất y = ax + b có đồ thị đi qua điểm M(1;4). Biết rằng đồ thị của hàm số đã cho cắt trục Ox tại điểm P có hoành độ dương và cắt trục Oy tại điểm Q có tung độ dương. Tìm a và b sao cho OP + OQ nhỏ nhất (với O là gốc tọa độ) b/ Tìm số tự nhiên có 2 chữ số. Biết rằng nếu lấy tổng của 2 chữ số ấy cộng với 3 lần tích của 2 chữ số ấy thì bằng 17. Bài 4. (2,0 điểm) Cho tam giác ABC. Gọi I là tâm đường tròn nội tiếp tam giác ABC, qua I vẽ đường thẳng vuông góc với đường thẳng CI, đường thẳng này cắt các cạnh AC, BC lần lượt tại M và N. a/ Chứng minh rằng hai tam giác IAM và BAI đồng dạng. b/ Chứng minh rằng Bài 5. (1,5 điểm) Cho tam giác ABC có là góc tù. Vẽ các đường cao CD và BE của tam giác ABC (D nằm trên đường thẳng AB, E nằm trên đường thẳng AC). Gọi M,N lần lượt là chân đường vuông góc của các điểm B và C trên đường thẳng DE. Biết rằng là diện tích tam giác ADE, là diện tích tam giác BEM và là diện tích tam giác CDN. Tính diện tích tam giác ABC theo .