Đề thi chọn học sinh giỏi lớp 6 - Môn: Toán học
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi lớp 6 - Môn: Toán học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_chon_hoc_sinh_gioi_lop_6_mon_toan_hoc.doc
Nội dung text: Đề thi chọn học sinh giỏi lớp 6 - Môn: Toán học
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 6 HUYỆN SƠN DƯƠNG NĂM HỌC 2017-2018 Môn thi: TOÁN ĐỀ CHÍNH THỨC Thời gian: 120 phút (không kể thời gian giao đề) (Đề thi gồm có 01 trang) Câu 1. (4 điểm) 12 12 12 5 5 5 12 5 158158158 a) Thực hiện phép tính: A = 81. 7 289 85 : 13 169 91 . 4 4 4 6 6 6 4 6 711711711 7 289 85 13 169 91 b) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. Câu 2. (4 điểm) 5.(22.32 )9.(22 )6 2.(22.3)14.34 a) Thực hiện phép tính: A 5.228.318 7.229.318 b) Tính tổng: S = (3)0 + (3)1+ (3)2 + + (3)2015. Câu 3. (4 điểm) a) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11. 6 9 9 b) Tìm 3 số có tổng bằng 210, biết rằng số thứ nhất bằng số thứ 2 và số 7 11 11 2 thứ 2 bằng số thứ 3. 3 Câu 4. (6 điểm) a) Cho đoạn thẳng AB dài 7cm. Trên tia AB lấy điểm I sao cho AI = 4 cm. Trên tia BA lấy điểm K sao cho BK = 2 cm. 1. Hãy chứng tỏ rằng I nằm giữa A và K. 2. Tính IK. b) Trên tia Ox cho 4 điểm A, B, C, D. biết rằng A nằm giữa B và C; B nằm giữa C và D ; OA = 5cm; OD = 2 cm ; BC = 4 cm và độ dài AC gấp đôi độ dài BD. Tìm độ dài các đoạn BD; AC. Câu 5. (2 điểm) Chứng minh rằng: 32 + 33+ 34 + + 3101 chia hết cho 120. Giám thị coi thi không giải thích gì thêm - SBD:
- PHÒNG GIÁO DỤC & ĐÀO TẠO HƯỚNG DẪN CHẤM THI HUYỆN SƠN DƯƠNG KỲ THI CHỌN HỌC SINH GIỎI LỚP 6 NĂM HỌC 2017-2018 Môn thi : Toán Câu Phần Nội dung Điểm a 12 12 12 5 5 5 12 5 158158158 2đ Ta có: . A 81. 7 289 85 : 13 169 91 . 4 4 4 6 6 6 Câu 1 4 6 711711711 (4 điểm) 7 289 85 13 169 91 1 1 1 1 1 1 12 1 5 1 7 289 85 13 169 91 158.1001001 81. : . 1 1 1 1 1 1 711.1001001 1 4 1 6 1 7 289 85 13 169 91 12 5 158 0,5 81. : . 4 6 711 18 2 324 0,5 81. . 5 9 5 b (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750 2đ => x + 1 + x + 2 + x + 3 + . . . . . . . . . . + x + 100 = 5750 => ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750 0.5 101 . 50 + 100 x = 5750 0.5 100 x + 5050 = 5750 100 x = 5750 – 5050 0.5 100 x = 700 x = 7 0.5 5.(22.32 )9.(22 )6 2.(22.3)14.34 Ta có: A a 5.228.318 7.229.318 2đ 5.218.318.212 2.228.314.34 0.5 5.228.318 7.229.318 Câu 2 5.230.318 229.318 0.5 ( 4 điểm ) 228.318 (5 7.2) 229.318 (5.2 1) 2.9 1 2 228.318 (5 14) 9
- b 2đ S =(3)0+(3)1 + (3)2+(3)3+ + (3)2015. 3S = (3).[(3)0+(3)1+(3)2 + +(3)2015] 0,5 = (3)1+ (3)2+ +(3)2016] 0,5 1 2 2016 0 1 2015 3S – S = [(3) + (3) + +(3) ] - (3) -(3) - -(3) . 0,5 2S = (3)2016 -1. (3)2016 1 S = 0,5 2 Gọi số cần tìm là a ta có: (a-6) 11 ;(a-1) 4; (a-11) 19. 0.5 a (a-6 +33) 11 ; (a-1 + 28) 4 ; (a-11 +38 ) 19. 2đ (a +27) 11 ; (a +27) 4 ; (a +27) 19. 0.5 Do a là số tự nhiên nhỏ nhất nên a+27 nhỏ nhất 0.5 Câu 3 Suy ra: a +27 = BCNN (4 ;11 ; 19 ) . 0.5 (4 điểm) Từ đó tìm được : a = 809 9 6 21 b Số thứ nhất bằng: : = (số thứ hai) 2đ 11 7 22 0.5 9 2 27 Số thứ ba bằng: : = (số thứ hai) 0.5 11 3 22 Số thứ hai bằng: 22 (số thứ hai) 22 22 21 27 70 Tổng của 3 số bằng: (số thứ hai) = (số thứ hai) 0.5 22 22 70 21 Số thứ hai là : 210 : = 66 ; số thứ nhất là: . 66 = 63 ; số thứ 0.5 22 22 27 3 là: .66 = 81 22 1) Trên tia BA ta có BK = 2 cm. BA = 7cm nên BK< BA do đó điểm K nằm giữa A và B. Suy ra AK + KB = AB hay AK + 2 2,5 a = 7 AK = 5 cm. Trên tia AB có điểm I và K mà AI < AK (và 4 4đ <5) nên điểm I nằm giữa A và K 2) Do I nằm giữa A và K nên AI + IK = AK. Hay 4 + IK = 5 IK 1,5 = 5 – 4 = 1. Câu 4 b Vì A nằm giữa B và C nên BA +AC = BC BA +AC = 4 (1) 0,5 (6 điểm ) Lập luân B nằm giữa A và D. 2đ Theo gt OD < OA D nằm giữa O và A. Mà OD + DA = OA 2 + DA =5 DA =3 cm 0,5 Ta có DB + BA = DA DB +BA = 3 (2) Lấy (1) – (2): AC – DB = 1 (3) 0,5 Theo đề ra : AC = 2BD thay và (3) Ta có 2BD – BD = 1 BD = 1 0,5
- AC = 2BD AC = 2 cm Câu 5 Ta có 32 + 33+ 34+ + 3101 ( 2 điểm ) = (32+ 33+ 34 + 35) + (36 + 37 + 38 + 39)+ + (398 + 399 + 3100 + 3101) 0,5 = 31(3+32+33+34) + 35(3+32+33+34) + +397(3+32+33+34) 0,5 = 31.120 + 35.120 + +397.120 0,5 = 120(31 + 35 + +397) 120 (đpcm) 0,5 Lưu ý .Học sinh có cách giải khác đúng vẫn cho điểm tối đa.