Đề cương ôn tập học kỳ I môn Toán 9 - Năm học 2018-2019

doc 11 trang dichphong 5110
Bạn đang xem tài liệu "Đề cương ôn tập học kỳ I môn Toán 9 - Năm học 2018-2019", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_cuong_on_tap_hoc_ky_i_mon_toan_9_nam_hoc_2018_2019.doc

Nội dung text: Đề cương ôn tập học kỳ I môn Toán 9 - Năm học 2018-2019

  1. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 ĐỀ CƯƠNG ÔN TẬP TOÁN 9 HỌC KÌ I CHƯƠNG I Dạng 1: Tìm điều kiện xác định: Với giá trị nào của x thì các biểu thức sau đây xác định: 4 1) 2x 3 2) 2 3) 4) 5 x 2 x 3 x 2 6 3 5) 3x 4 6) 1 x 2 7) 3 8) 1 2x 3x 5 Dạng 2: Rút gọn biểu thức Bài 1 1) 12 5 3 48 2) 5 5 20 3 45 3) 2 32 4 8 5 18 4) 3 12 4 27 5 48 5) 12 75 27 6) 2 18 7 2 162 1 1 7) 3 20 2 45 4 5 8) ( 2 2) 2 2 2 9) 5 1 5 1 1 1 2 2 10) 11) 12) 2 2 5 2 5 2 4 3 2 4 3 2 1 2 13) ( 28 2 14 7) 7 7 8 x 2x x Bài 2 Cho biểu thức : A = với ( x >0 và x ≠ 1) x 1 x x a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại x 3 2 2 . a 4 a 4 4 a Bài 3. Cho biểu thức : P = ( Với a 0 ; a 4 ) a 2 2 a a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1. x 1 2 x x x Bài 4: Cho biểu thức A = x 1 x 1 a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A; c)Với giá trị nào của x thì A< -1. CHƯƠNG II: HÀM SỐ BẬC NHẤT Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2 1) Tìm m để (d1) và (d2) cắt nhau . 2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính. Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao? Bài 3: Cho hàm số bậc nhất y = (1- 3m)x + m + 3 đi qua N(1;-1) , hàm số đồng biến hay nghịch biến ? Vì sao? Bài 4: Cho hai đường thẳng y = mx – 2 ;(m 0) và y = (2 - m)x + 4 ;(m 2) . Tìm điều kiện của m để hai đường thẳng trên: a)Song song; b)Cắt nhau . Bài 5: Với giá trị nào của m thì hai đường thẳng y = 2x + 3+m và y = 3x + 5- m cắt nhau tại một điểm 1 trên trục tung .Viết phương trình đường thẳng (d) biết (d) song song với (d’): y = x và cắt trục 2 hoành tại điểm có hoành độ bằng 10. Bài 6: Viết phương trình đường thẳng (d), biết (d) song song với (d’) : y = - 2x và đi qua điểm A(2;7). Bài 7: Viết phương trình đường thẳng đi qua hai điểm A(2; - 2) và B(-1;3). 1 Bài 8: Cho hai đường thẳng : (d1): y = x 2 và (d2): y = x 2 2 a/ Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy. GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 1
  2. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 b/ Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2) Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)? Bài 9: Cho các đường thẳng (d1) : y = 4mx - (m+5) với m 0 2 2 (d2) : y = (3m +1) x +(m -9) a; Với giá trị nào của m thì (d1) // (d2) b; Với giá trị nào của m thì (d1) cắt (d2) tìm toạ độ giao điểm Khi m = 2 c; C/m rằng khi m thay đổi thì đường thẳng (d1) luôn đi qua điểm cố định A ;(d2) đi qua điểm cố định B . Tính BA ? Bài 10: Cho hàm số : y = ax +b a; Xác định hàm số biết đồ thị của nó song song với y = 2x +3 và đi qua điểm A(1,-2) b; Vẽ đồ thị hàm số vừa xác định - Rồi tính độ lớn góc  tạo bởi đường thẳng trên với trục Ox ? c; Tìm toạ độ giao điểm của đường thẳng trên với đường thẳng y = - 4x +3 ? d; Tìm giá trị của m để đường thẳng trên song song với đường thẳng y = (2m-3)x +2 Bài 11 : Cho hàm số y = (m + 5)x+ 2m – 10 e) Tìm m để đồ thị đi qua điểm 10 trên trục a) Với giá trị nào của m thì y là hàm số bậc nhất hoành b) Với giá trị nào của m thì hàm số đồng biến. f) Tìm m để đồ thị hàm số song song với đồ c) Tìm m để đồ thị hàm số điqua điểm A(2; 3) thị hàm số y = 2x -1 d) Tìm m để đồ thị cắt trục tung tại điểm có tung g) Chứng minh đồ thị hàm số luôn đi qua 1 độ bằng 9. điểm cố định với mọi m. h) Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất Bài 12: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để: a) Đường thẳng d qua gốc toạ độ f) Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại b) Đường thẳng d song song với đ/thẳng 2y- x một điểm có hoành độ là 2 =5 g) Đường thẳng d cắt đồ thị Hs y= -x +7 tại một c) Đường thẳng d tạo với Ox một góc nhọn điểm trên trục tung d) Đường thẳng d tạo với Ox một góc tù h) Đường thẳng d đi qua giao điểm của hai e) Đường thẳng d cắt Ox tại điểm có hoành độ đường thảng 2x -3y=-8 và y= -x+1 2 Bài 13: Cho hàm số y=( 2m-3).x+m-5 a) Vẽ đồ thị với m=6 d) Tìm m để đồ thị hàm số cắt đường thẳng y = b) Chứng minh họ đường thẳng luôn đi qua 3x-4 tại một điểm trên 0y điểm cố định khi m thay đổi e) Tìm m để đồ thị hàm số cắt đường thẳng y = - c) Tìm m để đồ thị hàm số tạo với 2 trục toạ độ x-3 tại một điểm trên 0x một tam giác vuông cân Bài 14 Cho hàm số y = (m -2)x + m + 3 a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến . b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3. c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy. d)Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2 BÀI TẬP HÌNH HỌCTỔNG HỢP HỌC KỲ I: Bài 1 Cho tam giác ABC (AB = AC ) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D a/ Chứng minh: AD là đường kính; b/ Tính góc ACD; c/ Biết AC = AB = 20 cm , BC =24 cm tính bán kính của đường tròn tâm (O). GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 2
  3. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 Bài 2 Cho ( O) và A là điểm nằm bên ngoài đường tròn . Kẻ các tiếp tuyến AB ; AC với đường tròn ( B , C là tiếp điểm ) a/ Chứng minh: OA BC b/Vẽ đường kính CD chứng minh: BD// AO c/Tính độ dài các cạnh của tam giác ABC biết OB =2cm ; OC = 4 cm? Bài 3: Cho đường tròn đường kính AB . Qua C thuộc nửa đường tròn kẻ tiếp tuyến d với đường tròn. Gọi E , F lần lượt là chân đường vuông góc kẻ từ A , B đến d và H là chân đường vuông góc kẻ từ C đến AB. Chửựng minh: a/ CE = CF b/ AC là phân giác của góc BAE c/ CH2 = BF . AE Bài 4: Cho đường tròn đường kính AB vẽ các tiếp tuyến A x; By từ M trên đường tròn ( M khác A, B) vẽ tiếp tuyến thứ 3 nó cắt Ax ở C cắt B y ở D gọi N là giao điểm của BC Và AO .CMR CN NB a/ b/ MN  AB c/ góc COD = 90º AC BD Bài 5: Cho ñöôøng troøn (O), ñöôøng kính AB, ñieåm M thuoäc ñöôøng troøn. Veõ ñieåm N ñoái xöùng vôùi A qua M. BN caét ñöôøng troøn ôû C. Goïi E laø giao ñieåm cuûa AC vaø BM. a)CMR: NE  AB b) Goïi F laø ñieåm ñoái xöùng vôùi E qua M .CMR: FA laø tieáp tuyeán cuûa (O). c) Chöùng minh: FN laø tieáp tuyeán cuûa ñtroøn (B;BA). d/ Chöùng minh : BM.BF = BF2 – FN2 Baøi 6: Cho nöûa ñöôøng troøn taâm O, ñöôøng kính AB = 2R, M laø moät ñieåm tuyø yù treân nöûa ñöôøng troøn ( M A; B).Keû hai tia tieáp tuyeán Ax vaø By vôùi nöûa ñöôøng troøn.Qua M keû tieáp tuyeán thöù ba laàn löôït caét Ax vaø By taïi C vaø D. a) Chöùng minh: CD = AC + BD vaø goùc COD = 900 b) Chöùng minh: AC.BD = R2 c) OC caét AM taïi E, OD caét BM taïi F. Chöùng minh EF = R. d) Tìm vò trí cuûa M ñeå CD coù ñoä daøi nhoû nhaát. Baøi 7: Cho ñöôøng troøn (O; R), ñöôøng kính AB. Qua A vaø B veõ laàn löôït 2 tieáp tuyeán (d) vaø (d’) vôùi ñöôøng troøn (O). Moät ñöôøng thaúng qua O caét ñöôøng thaúng (d) ôû M vaø caét ñöôøng thaúng (d’) ôû P. Töø O veõ moät tia vuoâng goùc vôùi MP vaø caét ñöôøng thaúng (d’) ôû N. a/ Chöùng minh OM = OP vaø tam giaùc NMP caân. b/ Haï OI vuoâng goùc vôùi MN. Chöùng minh OI = R vaø MN laø tieáp tuyeán cuûa ñöôøng troøn (O). c/ Chöùng minh AM.BN = R2 d/ Tìm vò trí cuûa M ñeå dieän tích töù giaùc AMNB laø nhoû nhaát. Veõ hình minh hoaï. Baøi 8: Cho tham giác ABC có 3 góc nhọn . Đường tròn (O) có đường kính BC cắt AB , AC theo thứ tự ở D , E . Gọi I là giao điểm của BE và CD . a) Chứng minh : AI  BC b) Chứng minh : IDˆ E = IAˆ E c) Cho góc BAC = 600 . Chứng minh tam giác DOE là tam giác đều . Bài 9 : Cho đường tròn (O) đường kính AB . Kẻ tiếp tuyến Ax với đường tròn . Điểm C thuộc nửa đường tròn cùng nửa mặt phẳng với Ax với bờ là AB. Phân giác góc ACx cắt đường tròn tại E , cắt BC ở D .Chứng minh : a)Tam giác ABD cân . b) H là giao điểm của BC và DE . Chứng minh DH  AB . c) BE cắt Ax tại K . Chứng minh tứ giác AKDH là hình thoi . ĐỀTHAM KHẢO ĐỀ 1 I . TRẮC NGHIỆM (3,0 đ): Câu 1(2 đ): Khoanh tròn vào chữ cái đứng trước kết quả đúng GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 3
  4. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 1. Căn bậc hai số học của số a không âm là: A. Số có bình phương bằng a B.a C. -a D. B,C đều đúng 2. Hàm số y= (m-1)x –3 đồng biến khi: A. m >1 B.m r ; gọi d là khoảng cách OO’. Hãy ghép mỗi vị trí tương đối giữa hai đường tròn (O) và (O’) ở cột trái với hệ thức tương ứng ở cột phải để được một khẳng định đúng Vị trí tương đối của (O) và (O’) Hệ thức 1) (O) đựng (O’) 5) R- r R + r II. TỰ LUẬN (7 đ): x x 2 x Câu 1(2 đ): Cho biểu thức : P = : x 2 x 2 x 4 a. Tìm điều kiện của x để P được xác định . Rút gọn P b)Tìm x để P > 4 Câu 2(2đ): Cho hàm số : y = (m -1)x + 2m – 5 ; ( m 1) (1) a. Tìm giá trị của m để đường thẳng có phương trình (1) song song với đường thẳng y = 3x + 1 b. Vẽ đồ thị của hàm số (1) khi m = 1,5 . Tính góc tạo bởi đường thẳng vẽ được và trục hồnh (kết quả làm tròn đến phút) Câu 3(3đ) Cho nửa đường tròn tâm O,đường kính AB. Vẽ các tiếp tuyến Ax , By cùng phía với nửa đường tròn đối với AB. Qua điểm E thuộc nửa đường tròn (E khác A và B) kẽ tiếp tuyến với nửa đường tròn, nó cắt Ax , By theo thứ tự ở C và D a)Chứng minh rằng : CD = AC + BD b)Tính số đo góc C·OD ? c)Tính : AC.BD ( Biết OA = 6cm) ĐỀ 2 Câu 1: (2,0 điểm) a. Thực hiện phép tính: 18 2 45 3 80 2 50 b. Tìm x, biết: x 2 3 Câu 2: (2,0 điểm) 1 1 2x Cho biểu thức P= : x 2 x 2 x 4 a. Tìm giá trị của x để P xác định. b. Rút gọn biểu thức P c. Tìm các giá trị của x để P <1. Câu 3: (2,0 điểm) Cho hàm số y = (m -3) x + 2 (d1) a. Xác định m để hàm số nghịch biến trên R. b.Vẽ đồ thị hàm số khi m = 4 c. Với m = 4, tìm tọa độ giao điểm M của hai đường thẳng (d1) và (d2): y = 2x - 3 Câu 4: ( 1,5 điểm) Cho tam giác ABC có AB= 6cm, AC= 4,5cm, BC= 7,5cm. a. Chứng minh tam giác ABC vuông. b. Tính góc B, góc C, và đường cao AH. Câu 5: (2,5 điểm) GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 4
  5. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 Cho ( O,R ), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K. a. Chứng minh: Tam giác OKA cân tại A. b. Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O). ĐỀ 3 Bài 1: Thực hiện phép tính: 10 15 a) 45 20 5 : 6 b) 8 12 1 Bài 2: Giải phương trình: x 5 4x 20 9x 45 3 5 2 x 2 x 2 1 x Bài 3: Cho biểu thức: P = . . Với x > 0; x ≠ 1 x 1 x 2 x 1 2 a) Rút gọn P b) Tính giá trị của P khi x = 7 4 3 . c) Tìm x để P có GTLN. Bài 4: Cho hàm số: y = f(x) = (m – 1)x + 2m – 3. a) Biết f(1) = 2 tính f(2). b) Biết f(-3) = 0; Hàm số f(x) là hàm số đồng biến hay nghịch biến Bài 5: Cho đường tròn (O), điểm A nằm bên ngoài đường tròn, kẻ tiếp tuyến AM, AN ( M, N là các tiếp điểm). a) Chứng minh OA vuông góc MN. b) Vẽ đường kính NOC; Chứng minh CM song song AO. c) Tính các cạnh cạa ∆AMN biạt OM = 3 cm; ) OA = 5 cm. ĐỀ4 Bài 1: Thực hiện phép tính: 1 1 a) b) 3. 12 27 3 3 2 3 2 Bài 2: Giải phương trình: x 1 4x 4 25x 25 2 0 x 3 6 x 4 Bài 3: Cho biểu thức: P = . Với x ≥ 0; x ≠ 1 x 1 x 1 x 1 a) Rút gọn P b) Tìm x để P = -1 c) Tìm x nguyên để P có giá trị nguyên. Bài 4: Cho hàm số: y = ax + 3.Tìm a biết a) Đồ thị hàm số song song với đường thẳng y = - 2x. Vẽ đồ thị hàm số tìm được. b) Đồ thị hàm số đi qua điểm A(2; 7) Bài 5: Cho đường nửa tròn (O), đường kính AB. Lấy điểm M trên đường tròn(O), kẻ tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn tại C và D; AM cắt OC tại E, BM cắt OD tại F. GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 5
  6. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 a) Chứng minh C· OD 900 . b) Tứ giác MÈO là hình gì? c) Chứng minh AB là tiếp tuyến của đường tròn đường đường kính CD. ĐỀ 5 Câu 1 (3,0 điểm) 1. Thực hiện các phép tính: 2 a. 144 25. 4 b. 3 1 3 1 2. Tìm điều kiện của x để 6 3x có nghĩa. Câu 2 (2,0 điểm) 1. Giải phương trình: 4x 4 3 7 2. Tìm giá trị của m để đồ thị của hàm số bậc nhất y (2m 1)x 5 cắt trục hoành tại điểm có hoành độ bằng 5. Câu 3 (1,5 điểm) x 2 x x 1 Cho biểu thức A . (với x 0; x 4 ) x 2 x x 2 x 1 1. Rút gọn biểu thức A. 2. Tìm x để A 0. Câu 4 (3,0 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax , By của nửa đường tròn (O) tại A và B (Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tiaAx vàBy theo thứ tự tại C và D. 1. Chứng minh tam giác COD vuông tại O; 2. Chứng minh AC.BD = R 2 ; 3. Kẻ MH  AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH. Câu 5 (0,5 điểm) 1 1 1 Cho x 2014; y 2014 thỏa mãn: . Tính giá trị của biểu thức: x y 2014 x y P x 2014 y 2014 ĐỀ 5 I . TRẮC NGHIỆM (2,0 đ): 1 Câu 1: Điều kiện của biểu thức có nghĩa là: 2x 5 5 5 5 5 A. x B. x C. x D. x 2 2 2 2 Câu 2: Giá trị biểu thức 4 2 3 là: A. 1 3 B. 3 1 C. 3 1 D. Đáp án khác Câu 3: Hàm số y = ( - 3 – 2m )x – 5 luôn nghịch biến khi: 3 3 3 A. m B. m C. m D. Với mọi giá trị của m 2 2 2 Câu 4: Đồ thị hàm số y = ( 2m – 1) x + 3 và y = - 3x + n là hai đường thẳng song song khi: GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 6
  7. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 1 A. m 2 B. m 1 C. m 1 và n 3 D. m và n 3 2 Câu 5: Cho hình vẽ, sin là: AD BD B A,sin B,sin D AC AD BA AD C,sin D,sin AC BC A C 4 Câu 6: Cho tam giác ABC, góc A = 900, có cạnh AB = 6, tgB thì cạnh BC là: 3 A. 8 B. 4,5 C. 10 D. 7,5 Câu 7: Cho ( O; 12 cm) , một dây cung của đường tròn tâm O có độ dài bằng bán kính . Khoảng cách từ tâm đến dây cung là: A. 6 B. 6 3 C. 6 5 D. 18 Câu 8: Hai đường tròn ( O; R) và ( O’ ; R’) có OO’ = d. Biết R = 12 cm, R’ = 7 cm, d = 4 cm thì vị trí tương đối của hai đường tròn đó là: A. Hai đường tròn tiếp xúc nhau. B. Hai đường tròn ngoài nhau. C. Hai đường tròn cắt nhau D. Hai đường tròn đựng nhau II . TRẮC NGHIỆM (7,0 đ): Câu 9 (2,5 đ) Cho biểu thức: x x 1 x 1 ( với x 0; x 1 ) A : x x x x 1 x 1 x 1 a, Rút gọn biểu thức A. b, Tính giá trị biểu thức A với x 4 2 3 c, Tìm x nguyên để biểu thức A nhận giá trị nguyên. Câu 10 ( 2,0 đ) Cho hàm số y = ( 2m – 1 ) x + 3 a, Tìm m để đồ thị hàm số đi qua điểm A( 2 ; 5 ) b, Vẽ đồ thị hàm số với m tìm được ở câu a. Câu 11 ( 3,0 đ) Cho ( O ; R ) , một đường thẳng d cắt đường tròn (O) tại C và D, lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M, Qua M vẽ tiếp tuyến MA, MB với đường tròn . Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng: a, AB vuông góc với OM. b, Tích OE . OM không đổi. c, Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định. Câu 12 ( 0, 5 đ) Cho x và y là hai số dương có tổng bằng 1. 1 3 Tìm GTNN của biểu thức: S x2 y2 4xy ĐỀ 6 Câu 1: Biểu thức ( x)2 được xác định khi : A. mọi x Thuộc R B. x 0 C. x = 0 D, x 0 Câu 2: Hai đường thẳng y = x + 1 và y = 2x – 2 cắt nhau tại điểm có toạ độ là: A. ( -3;4 ) B. (1; 2 ) C. ( 3;4) D. (2 ; 3 ) GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 7
  8. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 2 x y 5 Câu 3: Hệ phương trình có nghiệm là : 3x y 5 x 2 x 2 x 2 x 1 A. B. C. D. y 1 y 1 y 1 y 2 Câu 4: Điểm (-1 ; 2 ) thuộc đồ thị hàm số nào sau đây: A. y = 2x + 1 B. y = x - 1 C. y = x + 1 D. y = -x + 1 1 x Câu 5 :Giá trị biểu thức Khi x > 1 là: x2 2x 1 1 A. 1 B. -1 C. 1-x D. 1 x Câu 6: Nếu hai đường tròn có điểm chung thì số tiếp tuyến chung nhiều nhất có thể là: A. 4 B.3 C.2 D. 1 Câu 7 : Tam giác ABC có góc B = 450 ;góc C = 600 ; AC = a thì cạnh AB là: 1 A. a6 B . a 6 C a 3 D a 2 2 Câu 8. Cho tam giác đều ngoại tiếp đường tròn bán kính 2 cm . Khi đó cạnh của tam giác đều là : A. 4 3 cm B. 2 3 cm C. 3cm D. 4 cm Phần II – Tự luận ( 8 điểm ) x 2 x 1 x 1 Bài 1:( 1,5 điểm) cho biểu thức A = ( ): x x 1 x x 1 1 x 2 Với x 0; x 1 a , Rút gọn biểu thức A. b, Tìm giá trị lớn nhất của A Bài 2: ( 2 điểm ) Cho hàm số y = ( m+ 1 ) x +2 (d) a, Vẽ đồ thị hàm số với m = 1 b, Tìm m để đường thẳng (d) cắt đường thẳng y = x+ 3 tại điểm có hoành độ bằng 1 Bài 3: ( 1 điểm) Tìm a,b để hệ phương trình sau có nghiệm ( 1;2) (a 1) x by 1 ax 2by 2 Bài 4: ( 2,5 điểm ) Cho nửa đường tròn (0) đường kính AB; Ax là tiếp tuyến của nửa đường tròn . Trên nửa đường tròn lấy điểm D ( D khác A,B ) tiếp tuyến tại D của (0) cắt Ax ở S. a, Chứng minh S0 // BD b, BD cắt AS ở C chứng minh SA = SC c, Kẻ DH vuông góc với AB; DH cắt BS tại E . Chứng minh E là trung điểm của DH Bài 5: ( 1 điểm ) Tìm giá trị nhỏ nhất của biểu thức M = a2 + ab + b2 - 3a - 3b + 2011 ĐỀ 6 Bài 1: (2 điểm) Thực hiện phép tính : a) A = 5 20 3 45 b) Tìm x, biết: x 3 2 GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 8
  9. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 2 x 9 2 x 1 x 3 Bài 2: (2 điểm) Cho biểu thức: P ( x 3)( x 2) x 3 x 2 a) Với giá trị nào của x thì biểu thức P xác định? Rút gọn biểu thức P. Bài 3: (2 điểm) Cho hàm số y = (m – 1)x + 2 (d1) a) Xác định m để hàm số đồng biến trên ¡ . b) Vẽ đồ thị hàm số khi m = 2 c) Với m = 2, tìm giao điểm của hai đường thẳng (d1) và (d2): y = 2x – 3. Câu 4: (4 điểm) Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA ( K và A nằm cùng phía đối với BC ). Tiếp tuyến với đường tròn (O) tại C cắt OK ở I, OI cắt AC tại H. a) Chứng minh tam giác ABC vuông tại A. b) Chứng minh rằng: IA là tiếp tuyến của đường tròn (O) c) Cho BC = 30 cm, AB = 18 cm, tính các độ dài OI, CI. d) Chứng minh rằng CK là phân giác của góc ACI. ĐỀ 7 Bài 1: (3,5 điểm) a) Tính ( 2 1) 2 b) Thực hiện phép tính: 1. ( 3 2)( 3 2) 2. 3 12 48 c) Rút gọn biểu thức 1.( 3 1) 4 2 3 2. 5 2x 3 8x 50x 7 với x không âm d)1) Tính: A 9 17 9 17 2) Cho a, b, c là các số không âm. Chứng minh rằng: a b c ab ac bc Bài 2: (2 điểm) a) Hàm số y = 2x 3 đồng biến hay nghịch biến? Vẽ đồ thị (d) của hàm số. b) Xác định a và b của hàm số y = a.x + b, biết đồ thị của nó song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ là 5? c) Trong các điểm sau đây điểm nào thuộc, không thuộc đồ thị của hàm số xác định trong câu b? A( -1; 3), B(1; 3) d) Xác định k để đường thẳng y = -2x +5k và đường thẳng y = 3x - (2k +7) cắt nhau tại một điểm thuộc Ox. Bài 3:(1,5 điểm) 2 a) Cho góc nhọn α biết αC o=s . Tính Sinα ? 3 b) Giải tam giác ABC vuông tại A, biết góc B 600 , AB = 3,5 cm. Bài 4: (3,0 điểm) Cho đường tròn (0; R) đường kính AB. Lấy điểm C trên cung AB sao cho AC < BC. a)Chứng minh ABC vuông? b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F . Qua C vẽ tiếp tuyến (d/) với đường tròn(O) cắt ( d) tại D. Chứng minh DA = DF. c) Vẽ CH vuông góc với AB ( H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm của CH? Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của ( O), suy ra OE// CA? GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 9
  10. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 ĐỀ 8 Phần I. Trắc nghiệm khách quan (2,5 điểm) Chọn câu trả lời đúng và ghi kết quả vào bài làm Câu 1. Số nghịch đảo của số 2 2 3 là: 1 2 2 3 1 A. B. C. 3 2 2 D. 2 2 3 5 3 2 2 1 2 Câu 2. Với 0 < a < b, biểu thức  3a 2 a b có kết quả rút gọn là: a b A. 3a B. – a3 C. – 3a D. a 3 Câu 3. Đường thẳng y = 2x - 3 không thể: A. Đi qua điểm K(2 ; 1) B. Song song với đường thẳng y = 2x C. Trùng với đường thẳng y = 2x - 3 D. Cắt đường thẳng y = 2x + 2010 3 Câu 4. Nếu 0o < x < 90o, sin x thì cosx bằng: 4 13 13 4 3 13 A. B. C. D. 16 4 4 2 Câu 5. Cho đường tròn (O ; 2cm), dây AB = 2 cm. Khoảng cách từ O đến dây AB bằng: 3 3 A. 3 cm B. cm C. 1 cm D. cm 3 2 Phần II. Tự luận (7,5 điểm) 5 x 3 5 Bài 1. (2,5 điểm) Cho biểu thức Q x 1 2 x 2 2 x 2 1. Rút gọn Q 2. Tính giá trị của Q khi x = 9 4 2 Q 3 3. Tìm x biết rằng 0 2 x 2 Bài 2. (1,5 điểm) Cho đường thẳng (d): y = x + 3a + 5 (với a là tham số) 1. Tìm a để đường thẳng (d) đi qua điểm A(2 ; 10) 2. Tìm a để đường thẳng (d) cắt đường thẳng (Δ): y = 2 – 2x tại điểm B(x ; y) thoả mãn x2 + y2 = 40. Bài 3. (3,0 điểm) Cho hình vuông ABCD có cạnh bằng 1. Vẽ một phần tư đường tròn tâm A bán kính bằng 1 nằm trong hình vuông, trên đó lấy điểm K khác B và D. Tiếp tuyến tại K với đường tròn cắt cạnh BC ở E, cắt cạnh CD ở F. 1. Chứng minh rằng: E· AF 450 2. Gọi P là giao điểm của AE và BK, Q là giao điểm của AF và DK a) Chứng minh PQ // BD b) Tính độ dài đoạn PQ 3. Chứng minh rằng: 2 2 2 EF 1 Bài 4. (0,5 điểm) Cho x ≥ –1, y ≥ 1 thoả mãnx 1 y 1 2(x y)2 10x 6y 8 . Tìm giá trị nhỏ nhất của biểu thức P = x4 + y2 – 5(x + y) + 2020. GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 10
  11. Đề cương ôn tập toán 9 học kì 1 Năm học 2018 - 2019 ĐỀ 9 Câu 1 (2,5 điểm). Rút gọn các biểu thức sau: 1 1) A 3 12 4 3 5 27 2) B 7 4 3 x 1 x x 1 1 3) C : (với x 0, x 1 ) x 1 x 1 x 1 x 1 Câu 2 (2,5 điểm). Cho hàm số y 2m 1 x 2 (1) có đồ thị là đường thẳng dm. 1) Vẽ đồ thị hàm số (1) khi m = 1. 2) Tìm m để hàm số (1) đồng biến trên ¡ . 3) Tìm m để dm đồng qui với hai đường thẳng d1: y = x + 4 và d2: y = -2x + 7. Câu 3 (1,5 điểm). Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 3, AC = 4. 1) Tính độ dài cạnh BC. 2) Tính diện tích tam giác ABH. Câu 4 (2,5 điểm). Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm A bán kính AH và kẻ thêm đường kính HD của đường tròn đó. Từ D kẻ tiếp tuyến với đường tròn, cắt AC kéo dài tại E. 1) Chứng minh rằng tam giác BEC là tam giác cân tại B. 2) Chứng minh rằng BE là tiếp tuyến của đường tròn tâm A bán kính AH. Câu 5 (1,0 điểm).Tính giá trị biểu thức D 3 70 4901 3 70 4901 . ĐỀ 10 Bài 1: (1.5 điểm) Tính giá trị của biểu thức : 4 a) A = 20 b) B= 1 3 4 2 3 5 3 2 x 2 x 4 Bài 2: (3 điểm) Cho biểu thức: P = 2 x 2 x x 4 a) Tìm điều kiện xác định của biểu thức P. Rút gọn biểu thức P. b) Tìm x để P=2 c) Tính giá trị của P tai x thỏa mãn x 2 2 x 1 0 Bài 3: (2 điểm) Cho hàm số y = (m – 1)x + m (1) a) Xác định m để đường thẳng (1) song song với đường thẳng y = 1 x - 1 2 2 b) Xác định m để đường thẳng (1) cắt trục hoàng tại điểm A có hoành độ x=2 c) Xác định m để đường thẳng (1) là tiếp tuyến của đường tròn tâm (O) bán kính bằng 2 . (với O là gốc tọa độ của mặt phẳng Oxy) Câu 4: (3 điểm) Cho đường tròn (O;R), và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B,C là các tiếp điểm) Gọi H là giao điểm của BC và OA. a) Chứng minh OA  BC và OH.OA=R2 b) Kẻ đường kính BD của đường tròn (O) và đường thẳng CK  BD (K BD) . Chứng minh: OA//CD và AC.CD=CK.AO c) Gọi I là giao điểm của AD và CK. Chứng minh V BIK và V CHK có diện tích bằng nhau. 1 2 3 Câu 5: (0.5 điểm) Cho a,b,c là cách số dương thỏa mãn: a2+2b2 3c2 Chứng minh: a b c "Trong cách học, phải lấy tự học làm cốt." (Hồ Chí Minh) GV: Vũ Thị Huệ Trường THCS Vũ Phạm Khải 11