Các bài toán Hình học ôn thi vào Lớp 10

pdf 20 trang dichphong 4940
Bạn đang xem tài liệu "Các bài toán Hình học ôn thi vào Lớp 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfcac_bai_toan_hinh_hoc_on_thi_vao_lop_10.pdf

Nội dung text: Các bài toán Hình học ôn thi vào Lớp 10

  1. CÁC BÀI TOÁN HÌNH ÔN THI VÀO LỚP 10 (Dành tặng cho các em học sinh lớp 9 đang chuẩn bị ôn thi vào lớp 10 không chuyên) Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD. 1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn. 2. Chứng minh AB // EM. 3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh M là trung điểm HK. x 2 1 1 4. Chứng minh HK AB CD D C M BÀI GIẢI CHI TIẾT (hình 01) E H K 1. Chứng minh tứ giác AEDM nội tiếp. O A B 1 Ta có : EAC sđ AC (góc tạo bởi tia tiếp tuyến AE 2 Hình 01 và dây AC của đường tròn (O)) 1 Tương tự: xDB sđ DB (Dx là tia đối của tia tiếp tuyến DE) 2 Mà AC = BD (do ABCD là hình thang cân) nên AC BD . Do đó EAC xDB . Vậy tứ giác AEDM nội tiếp được trong một đường tròn. 2. Chứng minh AB // EM. Tứ giác AEDM nội tiếp nên EAD EMD (cùng chắn cung ED). Mà EAD ABD (góc tạo bởi tia tiếp tuyến và dây cung với góc nội tiếp cùng chắn cung AD). Suy ra: EMD ABD . Do đó EM // AB. 3. Chứng minh M là trung điểm HK. HM DH MK CK DAB có HM // AB . CAB có MK // AB . Mà AB DA AB CB DH CK HM MK (định lí Ta let cho hình thang ABCD). Nên . Do đó MH = MK. DA CB AB AB Vậy M là trung điểm HK. 2 1 1 4. Chứng minh . HK AB CD
  2. Áp dụng hệ quả định lí Ta let cho tam giác ADB có HM // AB ta được: HM DM (1). Áp dụng hệ quả định lí Ta let cho tam giác BCD có KM // CD ta AB DB KM BM được: (2). CD BD HM KM DM BM DM BM BD Cộng (1) và (2) vế theo vế ta được: 1 . AB CD DB BD BD BD 2HM 2 KM Suy ra: 2 , mà MH = MK nên 2HM = 2KM = HK. Do đó: AB CD HK HK 2 1 1 2 . Suy ra: (đpcm). AB CD HK AB CD Lời bàn: 1. Do AC = BD ADC BCD nên để chứng minh tứ giác AEDM nội tiếp ta sử dụng phương pháp: Nếu tứ giác có góc ngoài tại một đỉnh bằng góc đối của đỉnh của đỉnh đó thì tứ giác đó nội tiếp. Với cách suy nghĩ trên chỉ cần vẽ tia Dx là tia đối của tia tiếp tuyến DE thì bài toán giải quyết được dễ dàng. Có thể chứng minh tứ giác AEDM nội tiếp bằng cách chứng minh khác được không? (phần này dành cho các em suy nghĩ nhé) 2. Câu 3 có còn cách chứng minh nào khác không? Có đấy. Thử chứng minh tam giác AHM và tam giác BKM bằng nhau từ đó suy ra đpcm. 3. Câu 4 là bài toán quen thuộc ở lớp 8 phải không các em? Do đó khi học toán các em cần chú ý các bài tập quen thuộc nhé. Tuy vậy câu này vẫn còn một cách giải nữa đó. Em thử nghĩ xem? Bài 2 Cho nửa đường tròn (O) đường kính AB= 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Đường thẳng kẻ từ C song song với BM cắt tia AM ở K và cắt tia OM ở D. OD cắt AC tại H. 1. Chứng minh tứ giác CKMH nội tiếp. 2. Chứng minh CD = MB và DM = CB. 3. Xác định vị trí điểm C trên nửa đường tròn (O) để AD là tiếp tuyến của nửa đường tròn. 4. Trong trường hợp AD là tiếp tuyến cửa nửa đường tròn (O), tính diện tích phần tam giác ADC ở ngoài đường tròn (O) theo R. BÀI GIẢI CHI TIẾT 1. Chứng minh tứ giác CKMH nội tiếp. AMB 900 (góc nội tiếp chắn nửa đường tròn đường kính AB) AM  MB . Mà CD // BM (gt) nên AM  CD . Vậy MKC 900 .
  3. D AM CM (gt) OM  AC MHC 900 . K C 0 // Tứ giác CKMH có MKC MHC 180 nên nội tiếp được M = trong một đường tròn. H 2. Chứng minh CD = MB và DM = CB. A O B Ta có: ACB 900 (góc nội tiếp chắn nửa đường tròn) Hình 2 Do đó: DM // CB, mà CD // MB(gt) nên tứ giác CDMB là hình bình hành. Suy ra: CD = MB và DM = CB. 3. Xác định vị trí điểm C trên nửa đường tròn (O) để AD là tiếp tuyến của nửa đường tròn. AD là tiếp tuyến của đường tròn (O) AD  AB . ADC có AK  CD và DH  AC nên M là trực tâm tam giác . Suy ra: CM  AD. Vậy AD AB CM // AB AM BC . Mà AM MC nên AM BC AM MC BC = 600. D 4. Tính diện tích phần tam giác ADC ở ngoài (O) theo R: K M // C Gọi S là diện tích phần tam giác ADC ở ngoài = H đường tròn (O). S1 là diện tích tứ giác AOCD. A O B S2 là diện tích hình quạt góc ở tâm AOC. Ta có: S = S1 – S2 hình 3 Tính S1: AD là tiếp tuyến của đường tròn (O) AM MC BC 600 AOD 600 . 2 0 1 1R 3 Do đó: AD = AO. tg 60 = R 3 SADO = AD. AO . R 3. R . 2 2 2 2 R 3 2 AOD COD (c.g.c) SAOD = SCOD SAOCD = 2 SADO = 2. = R 3 . 2 2 0 2 0 R .120 R Tính S2: AC 120 S quạt AOC = = . 3600 3 2 2 2 2 2 R 3RR 3 R Tính S: S = S1 – S2 = R 3 – = = 3 3 (đvdt) . 3 3 3 Lời bàn: 1. Rõ ràng câu 1, hình vẽ gợi ý cho ta cách chứng minh các góc H và K là những góc vuông, và để có được góc K vuông ta chỉ cần chỉ ra MB  AM và CD// MB. Điều đó suy ra từ hệ quả của góc nội tiếp và giả thiết CD // MB. Góc H vuông
  4. được suy từ kết quả của bài số 14 trang 72 SGK toán 9 tập 2. Các em lưu ý các bài tập này được vận dụng vào việc giải các bài tập khác nhé. 2. Không cần phải bàn, kết luận gợi liền cách chứng minh phải không các em? 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà BC 600 thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì BC 600 . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: EOF 900 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh MK AB . 4. Khi MB = 3 .MA, tính diện tích tam giác KAB theo a. y F x BÀI GIẢI CHI TIẾT M 0 1. Chứng minh: EOF 90 . E EA, EM là hai tiếp tuyến của đường tròn (O) K A B cắt nhau ở E nên OE là phân giác của AOM . N O Tương tự: OF là phân giác của BOM .
  5. Mà AOM và BOM kề bù nên: EOF 900 (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. Ta có: EAO EMO 900 (tính chất tiếp tuyến) Tứ giác AEMO có EAO EMO 1800 nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có: AMB EOF 900 , MAB MEO (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh MK AB . AK AE Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai KF BF AK ME tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). KF MF Lại có: AE  AB (gt) nên MK  AB. 4. Khi MB = 3 .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN  AB. MK FK NK BK FEA có MK//AE nên (1). BEA có NK//AE nên (2). AE FA AE BE FK BK FK BK FK BK Mà (do BF // AE) nên hay (3). KA KE KA FK BK KE FA BE MK KN Từ (1), (2) và (3) suy ra . Vậy MK = NK. AE AE S KN 1 Tam giác AKB và tam giác AMB có chung đáy AB nên: AKB . SAMB MN 2 1 Do đó SS . AKB2 AMB MB Tam giác AMB vuông ở M nên tg A = 3 MAB 600 . MA a a 3 1 1a a 3 1 Vậy AM = và MB = S = a2 3 (đvdt). 2 2 AKB 2 2 2 2 16 Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó,
  6. và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) AQI ACO . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT x a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) M OA = OC (bán kính đường tròn (O)) Q C I Do đó: MO  AC MIA 900 . N A H B 0 O AQB 90 (góc nội tiếp chắn nửa đường tròn (O)) x K MQA 900 . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. M b) Chứng minh: AQI ACO . Q C I Tứ giác AMQI nội tiếp nên AQI AMI Hình 6 N A (cùng phụ MAC ) (2). O H B AOC có OA = OC nên cân ở O. CAO ACO (3). Từ (1), (2) và (3) suy ra AQI ACO . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: ACB 900 (góc nội tiếp chắn nửa đường tròn(O)). AC  BK , AC  OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho ABM có NH // AM (cùng  AB) ta được:
  7. NH BN (4). Áp dụng hệ quả định lí Ta let cho BKM có CN // KM (cùng AM BM CN BN NH CN  AB) ta được: (5). Từ (4) và (5) suy ra: . Mà KM = AM nên CN KM BM AM KM = NH (đpcm). Lời bàn 1. Câu 1 hình vẽ gợi cho ta suy nghĩ: Cần chứng minh hai đỉnh Q và I cùng nhìn AM dưới một góc vuông. Góc AQM vuông có ngay do kề bù với ACB vuông, góc MIA vuông được suy từ tính chất hai tiếp tuyến cắt nhau. 2. Câu 2 được suy từ câu 1, dễ dàng thấy ngay AQI AMI , ACO CAO , vấn đề lại là cần chỉ ra IMA CAO , điều này không khó phải không các em? 3. Do CH // MA , mà đề toán yêu cầu chứng minh CN = NH ta nghĩ ngay việc kéo dài BC cắt Ax tại K bài toán trở về bài toán quen thuộc: Cho tam giác ABC, M là trung điểm BC. Kẻ đường thẳng d // BC cắt AB, AC và AM lần lượt tại E, D và I. Chứng minh IE = ID. Nhớ được các bài toán có liên quan đến một phần của bài thi ta qui về bài toán đó thì giải quyết đề thi một cách dễ dàng. Bài 5 Cho đường tròn tâm O đường kính AB có bán kính R, tiếp tuyến Ax. Trên tiếp tuyến Ax lấy điểm F sao cho BF cắt đường tròn tại C, tia phân giác của góc ABF cắt Ax tại E và cắt đường tròn tại D. a) Chứng minh OD // BC. b) Chứng minh hệ thức: BD.BE = BC.BF c) Chứng minh tứ giác CDEF nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R. BÀI GIẢI CHI TIẾT x a) Chứng minh OD // BC. Hình 7 F BOD cân ở O (vì OD = OB = R) OBD ODB Mà OBD CBD (gt) nên ODB CBD . Do đó: OD // BC. // C b) Chứng minh hệ thức: BD.BE = BC.BF. E D = ADB 900 (góc nội tiếp chắn nửa đường tròn (O) AD  BE . A B O ACB 900 (góc nội tiếp chắn nửa đường tròn (O) AC  BF . EAB vuông ở A (do Ax là tiếp tuyến ), có AD  BE nên: AB2 = BD.BE (1).
  8. FAB vuông ở A (do Ax là tiếp tuyến), có AC  BF nên AB2 = BC.BF (2). Từ (1) và (2) suy ra: BD.BE = BC.BF. c) Chứng minh tứ giác CDEF nội tiếp: Ta có: CDB CAB (hai góc nội tiếp cùng chắn cung BC) CAB CFA ( cùng phụ FAC ) CDB CFA Do đó tứ giác CDEF nội tiếp. Cách khác BD BC DBC và FBE có: B chung và (suy từ BD.BE = BC.BF) nên chúng BF BE đồng dạng (c.g.c). Suy ra: CDB EFB. Vậy tứ giác CDEF là tứ giác nội tiếp. x d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: F Ta có: ABD CBD (do BD là phân giác ABC ) AD CD . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R AD DC 600 AC 1200 ABC 600 0 Vậy ABC 60 thì tứ giác AOCD là hình thoi. E D C Tính diện tích hình thoi AOCD theo R: 0 AC 120 AC R 3 . A B O 1 1R2 3 Sthoi AOCD = OD. AC . R . R 3 (đvdt). Hình 8 2 2 2 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong ODB và OBD bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra BD.BE = BC.BF. Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC bằng 600. Tính diện tích hình thoi chỉ cần nhớ
  9. công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như AC 1200 AC R 3 , các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. A b) Chứng minh FB là phân giác của EFN . c) Giả sử AH = BC . Tính số đo góc BAC của ABC. F E H BÀI GIẢI CHI TIẾT B N C a) Chứng minh tứ giác HFCN nội tiếp: Ta có : BFC BEC 900 (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có HFC HNC 1800 nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có EFB ECB (hai góc nội tiếp cùng chắn BE của đường tròn đường kính BC). ECB BFN (hai góc nội tiếp cùng chắn HN của đường tròn đường kính HC). Suy ra: EFB BFN . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: AFH BFC 900 , AH = BC (gt), FAH FBC (cùng phụ ACB ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó BAC 450 . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA  DE. d) Cho biết OA = R , BAC 600 . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông E F C = // A O B D
  10. góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của EAD . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: AED AFD 900 (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: AE CD AE// OC . Vậy EAC CAD ( so le trong) OC CD Tam giác AOC cân ở O (vì OA = OC = R) nên CAO OCA . Do đó: EAC CAD . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: EFA CDB (hai góc nội tiếp cùng chắn AE của đường tròn ngoại tiếp tứ giác EFDA). EAC CAB EAF BCD . Vậy EFA và BDC đồng dạng (góc- góc). CAB DCB d) Chứng minh các tam giác ACD và ABF có cùng diện tích: 1 1 SACD = DF. AC và SABF = BC.AF. (1) 2 2 BC AC BC // DF (cùng  AF) nên hay DF. AC = BC.AF (2). DF AF Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). Bài 9 Cho tam giác ABC ( BAC 450 ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ
  11. từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh MAP cân. c) Tìm điều kiện của ABC để ba điểm M, K, O thẳng hàng. H BÀI GIẢI M C a) Chứng minh tứ giác MKCH nội tiếp: K Ta có : MHC 900 (gt), MKC 900 (gt) Tứ giác MKCH có tổng hai góc đối nhau A O P B bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên MAC ACO (so le trong) AOC cân ở O (vì OA = OC = R) nên ACO CAO . Do đó: MAC CAO . Vậy AC là phân giác của MAB . Tam giác MAP có AK là đường cao (do AC  MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên AMP HCK (cùng bù HMK ). HCA CBA 1 (cùng bằng sđ AC ), CBA MPA (hai góc đồng vị của MP// CB). 2 Suy ra: AMP APM . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P  O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó CAB 300 . Đảo lại: CAB 300 ta chứng minh P  O: Khi CAB 300 MAB 600 (do AC là phân giác của MAB ) . Tam giác MAO cân tại O có MAO 600 nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P  O. Trả lời: Tam giác ABC cho trước có CAB 300 thì ba điểm M; K và O thẳng hàng. Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) AHN ACB A b) Tứ giác BMNC nội tiếp. N O M I / / // // B P H Q C
  12. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh AHN ACB : ANH 900 (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. AHC 900 (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó AHN ACB (cùng phụ HAC ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : AMN AHN (hai góc nội tiếp cùng chắn cung AN). AHN ACB (câu a). Vậy: AMN ACB . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC  AB nên QO  AB. Tam giác ABQ có AH  BQ và QO  AB nên O là trực tâm của tam giác. Vậy BO  AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO  AQ ta được PI  AQ. Tam giác APQ có AH  PQ và PI  AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ I giác đó: Ta có ACB ANB 900 (góc nội tiếp chắn nửa đường tròn (O)). K C / 0 N Do đó: ICP INP 90 = H M / 0 P Tứ giác ICPN có ICP INP 180 nên nội tiếp được = A B trong một đường tròn. Tâm K của đường tròn ngoại tiếp O tứ giác ICPN là trung điểm của đoạn thẳng IP.
  13. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên 1 KN KI IP . Vậy tam giác IKN cân ở K . Do đó KIN KNI (1). 2 Mặt khác NKP NCP (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên CN BN CN NB . Vậy NCB cân tại N. Do đó : NCB NBC (3). Từ (1), (2) và (3) suy ra INK IBC , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON  BC nên KN  ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh KNI ONB 900 KNO 90 0 * hoặc chứng minh KNA ANO 900 KNO 90 0 . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có AM MC (gt) nên AOM MOC . Vậy OM là phân giác của AOC . Tương tự ON là phân giác của COB , mà AOC và COB kề bù nên MON 900 . Vậy tam giác MON vuông cân ở O. 2 R 2 Kẻ OH  MN, ta có OH = OM.sinM = R. = không đổi. 2 2 Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một R 2 đường tròn cố định (O; ). 2 Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . B b) Chứng minh HA là tia phân giác của BHC 2 1 1 // c) Chứng minh : . AK AD AE A O // D / K BÀI GIẢI H / a) Chứng minh tứ giác ABOC nội tiếp: C E ABO ACO 900 (tính chất tiếp tuyến)
  14. Tứ giác ABOC có ABO ACO 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra AB AC . Do đó AHB AHC . Vậy HA là tia phân giác của góc BHC. 2 1 1 c) Chứng minh : AK AD AE B ABD và AEB có: 1 = BAE chung, ABD AEB (cùng bằng sđ BD ) 2 A _ O Suy ra : ABD ~ AEB = D / K H / AB AD E Do đó: AB2 AD. AE (1) AE AB C ABK và AHB có: BAH chung, ABK AHB (do AB AC ) nên chúng đồng dạng. AK AB Suy ra: AB2 AK. AH (2) AB AH Từ (1) và (2) suy ra: AE.AD = AK. AH 1 AH 2 2AH 2 AD DH 2AD 2 DH AD AD ED = = = AK AE. AD AK AE. AD AE. AD AE. AD AE. AD AE AD 1 1 = (do AD + DE = AE và DE = 2DH). AE. AD AD AE 2 1 1 Vậy: (đpcm). AK AD AE Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho MAB 600 . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI M a) Chứng minh AM và AN là các tiếp tuyến của 60 B A O J N I
  15. đường tròn (B; BM). Ta có AMB ANB 900 . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM  MB và AN  NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2. MNI MNJ 900 (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN  MN và JN  MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), MAO 600 nên tam giác MAO đều. AB  MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). 1 1 RR3 3R Nên OH = OA R . Vậy HB = HO + OB = R NJ 2. 3 R . 2 2 2 2 2 Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). 2 0 0 2 Tính S1: MAB 60 MB 120 MB R 3 . Vậy: S1 = RR3 3 . 2 0 R 3 60 2 0 R Tính S2: MBN 60 S2 = = 3600 2 2 0 2 0 RR.120 Tính S3: S3 = Squạt MOB – SMOB. MOB 120 Squạt MOB = . 3600 3 1 1 1 1 R2 3 OA = OB SMOB = SAMB = AM MB = RR. 3 = 2 2 2 4 4 R2 R2 3 Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 - (S2 + 2S3) 3 4 2 2 2 2 2 2 RRR2 3 11 RR 3 3 = 3 R – = (đvdt). 2 3 2 6 Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp.
  16. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh MHD 450 . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). C BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: // M 0 = CAO CDO 90 (tính chất tiếp tuyến). D I 0 _ Tứ giác ACDO có CAO CDO 180 nên H / / nội tiếp được trong một đường tròn. A O B b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R OC  AD và AH = HD Tam giác ACO vuông ở A, AH  OC 1 1 1 1 1 5 2R 5 4R 5 nên = = . Vậy AH = và AD = 2AH = . AH2 AO 2 AC 2 R2 2R 2 4R2 5 5 c) Chứng minh MHD 450 : AMB 900 (góc nội tiếp chắn nửa đường tròn) CMA 900 . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: ACM MHD . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy ACB 450 . Do đó : MHD 450 . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ CHD 900 và MHD 450 CHM 450 mà CBA 450 (do CAB vuông cân ở B). Nên CHM CBA Tứ giác HMBO nội tiếp . Do đó MHB MOB 900 . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: 2 2 0 1 RR 2 MB 90 MB R 2 . Vậy S1 = . . 2 2 4
  17. RR2.90 0 2 RR2 2 Tính S2: S2 = SquạtMOB – S MOB = = . 3600 2 4 2 R2 RR2 2 R2 S = ( ) = . 4 4 2 2 Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg ABC . c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI M K a) Chứng minh tứ giác MNAC nội tiếp: C 0 ACB 90 (góc nội tiếp chắn nửa đường tròn) E I Suy ra MCA 900 . Tứ giác MNAC có NC 1800 B N A H O nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. D AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH  AB CH 5 CH2 = AH . BH = 1 . 5 = 5 CH 5 (cm). Do đó tg ABC = . BH 5 c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có NCA NMA (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). NMA ADC (so le trong của MN // CD) và ADC ABC (cùng chắn AC ) 1 1 Nên NCA ABC . Do ABC sđ AC NCA sđ AC . Suy ra CN là tiếp tuyến của 2 2 đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùng  với AB) AKB DCB (đồng vị). DAB DCB (cùng chắn cung BD). DAB MAN (đối đỉnh) và MAN MCN (cùng chắn MN ).
  18. Suy ra: EKC ECK KEC cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. CI BI IH BI KBE có CI // KE và ABE có IH // AE . KE BE AE BE CI IH Vậy mà KE = AE nên IC = IH (đpcm). KE AE Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho BCD . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn B _ M c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức ? / lượng tính được CA = 25 cm R = 12,5 cm. / K O Từ đó tính được C = 25 A C d) M (O) ta cần có tứ giác ABMC nội tiếp. H E ABM ACM 1800 900 2MBC 180 0 2 D 1800 Từ đó tính được MBC . 4 Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho CAB 300 . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. a) Chứng minh AB2 = AM. AN b) Chứng minh tứ giác ABIO nội tiếp .
  19. IB DB c) Gọi D là giao điểm của BC và AI. Chứng minh IC DC Bài 19 Cho tam giác ABC nội tiếp đường tròn (O). Phân giác trong của BAC cắt BC tại D và cắt đường tròn tại M. Phân giác ngoài tại Acắt đường thẳng BC tại E và cắt đường tròn tại N. Gọi K là trung điểm của DE. Chứng minh: a) MN vuông góc với BC tại trung điểm của BC. b) ABN EAK c) AK là tiếp tuyến của đường tròn (O). Bài 20 Cho ba điểm A, B,C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ A vẽ hai tiếp tuyến AM và AN . Gọi E và F lần lượt là trung điểm của BC và MN. a) Chứng minh AM2 = AN2 = AB. AC b) Đường thẳng ME cắt đường tròn (O) tại I. Chứng minh IN // AB c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OEF nằm trên một đường thẳng cố định khi đường tròn (O) thay đổi. Bài 21 Cho đường tròn (O) đường kính AB = 2R . Điểm C nằm trên (O) mà AC > BC. Kẻ CD  AB ( D AB ) . Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Tiếp tuyến tại C của đường tròn (O) cắt AE tại M. OM cắt AC tại I . MB cắt CD tại K. a) Chứng minh M là trung điểm AE. b) Chứng minh IK // AB. c) Cho OM = AB. Tính diện tích tam giác MIK theo R. Bài 22 Trên cung nhỏ BC của đường tròn ngoại tiếp tam giác đều ABC lấy một điểm P tuỳ ý. Gọi là giao điểm của AP và BC. a) Chứng minh BC2 = AP . AQ . b) Trên AP lấy điểm M sao cho PM = PB . Chứng minh BP+PC= AP. 1 1 1 c) Chứng minh . PQ PB PC Bài 23 Cho nửa đường tròn (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn. CA cắt nửa đường tròn ở M, CB cắt nửa đường tròn ở N. Gọi H là giao điểm của AN và BM. a) Chứng minh CH  AB . b) Gọi I là trung điểm của CH. Chứng minh MI là tiếp tuyến của nửa đường tròn (O). c) Giả sử CH =2R . Tính số đo cung MN .
  20. Bài 24 Cho nửa đường tròn đường kính AB = 2R và dây MN có độ dài bằng bán kính (M thuộc cung AN). Các tia AM và BN cắt nhau ở I. Các dây AN và BM cắt nhau ở K. a) Tính MIN và AKB . b) Tìm quỹ tích điểm I và quỹ tích điểm K khi dây MN thay đổi vị trí . c) Chứng minh I là trực tâm của tam giác KAB . d) AB và IK cắt nhau tại H . Chứng minh HA.HB = HI.HK . e) Với vị trí nào của dây MN thì tam giác IAB có diện tích lớn nhất? Tính giá trị diện tích lớn nhất đó theo R. Bài 25 Trên đường tròn (O) lấy ba điểm A, B và C. Gọi M, N và P theo thứ tự là điểm chính giữa của các cung AB, BC và AC. BP cắt AN tại I, NM cắt AB tại E. Gọi D là giao điểm của AN và BC. Chứng minh rằng: AN AB a) BNI cân. b) AE.BN = EB.AN. c) EI  BC. d) . BN BD Bài 26 Cho hai đường tròn (O) và (O1) ở ngoài nhau. Đường nối tâm OO1 cắt các đường tròn (O) và (O1) tại các điểm A, B, C, D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến tuyến chung ngoài EF (E (O), F (O1)). Gọi M là giao điểm của AE và DF, N là giao điểm của EB và FC. Chứng minh rằng: a) Tứ giác MENF là hình chữ nhật. b) MN  AD. c) ME . MA = MF . MD. HẾT