Đề thi học sinh giỏi cấp trường - Môn thi: Toán lớp 8
Bạn đang xem tài liệu "Đề thi học sinh giỏi cấp trường - Môn thi: Toán lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_hoc_sinh_gioi_cap_truong_mon_thi_toan_lop_8.docx
Nội dung text: Đề thi học sinh giỏi cấp trường - Môn thi: Toán lớp 8
- TRƯỜNG THCS LAM SƠN ĐỀ THI HỌC SINH GIỎI CẤP TRƯỜNG NĂM HỌC 2014-2015 Môn thi : TOÁN LỚP 8 Bài 1. (2 điểm) Phân tích các đa thức sau thành nhân tử: a) 5x2 26x 24 1 3 3 b) x3 x2 x 1 8 4 2 c) x2 6x 5 d) x4 2015x2 2014x 2015 Bài 2. (1,5 điểm) a) Chứng minh rằng biểu thức sau không phụ thuộc vào biến: 7 6x 7 2x 3 4x 1 3x 4 x y b) Tính giá trị biểu thức P .Biết x2 2y2 xy x y 0; y 0 x y c) Tìm số dư trong phép chia của biểu thức x 2 x 4 x 6 x 8 2015 cho đa thức x2 10x 21. 4xy 1 1 Bài 3. (1,25 điểm) Cho biểu thức : A 2 2 : 2 2 2 2 y x y x y 2xy x a) Tìm điều kiện của x, y để giá trị của A được xác định b) Rút gọn A c) Nếu x, y là các số thực làm cho A xác định và thỏa mãn:3x2 y2 2x 2y 1, hãy tìm tất cả các giá trị nguyên dương của A. Bài 4. (2 điểm) Giải các phương trình sau: a) x3 2x2 5x 6 0 b) 5 3x 3x 5 3 2 4 9 c) x2 5x 4 x2 10x 24 3 x2 3x 18 d) x2 y2 2x 4y 10 0 với x, y nguyên dương.
- Bài 5. (2,75 điểm) Cho hình vuông ABCD. Qua Avẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S a) Chứng minh AQR và APS là các tam giác cân b) QR cắt PS tại H. M, N là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật c) Chứng minh P là trực tâm SQR d) Chứng minh MN là đường trung trực của AC e) Chứng minh bốn điểm M ,B, N,D thẳng hàng. Bài 6. (0,5 điểm) a) Tìm giá trị nhỏ nhất của biểu thức A 13x2 y2 4xy 2y 16x 2015 1 b) Cho hai số a,bthỏa mãn điều kiện a b 1.Chứng minh : a3 b3 ab 2
- ĐÁP ÁN Bài 1. a) 5x2 26x 24 5x2 6x 20x 24 x 5x 6 4 5x 6 5x 6 x 4 3 2 3 1 3 3 2 3 1 1 1 2 3 1 b) x x x 1 x 3. x .1 3. x .1 1 x 1 8 4 2 2 2 2 2 c) x2 6x 5 x x 1 5 x 1 x 5 x 1 d) x4 2015x2 2014x 2015 x4 x3 x2 x3 x2 x 2015x2 2015x 2015 x2 x2 x 1 x x2 x 1 2015 x2 x 1 x2 x 1 x2 x 2015 Bài 2. 7 6x 7 2x 3 4x 1 3x 4 a) 7 77 12x2 18x 14x 21 12x2 7x 3x 4 4 b) x2 2y2 xy x2 xy 2y2 0 x y x 2y 0 2y y 1 Vì x y 0 nên x 2y 0 x 2y. Khi đó A 2y y 3 c) P x x 2 x 4 x 6 x 8 2015 x2 10x 16 x2 10x 24 2015 Đặt t x2 10x 21 t 3;t 7 , biểu thức P(x) được viết lại P(x) t 5 t 3 t 2 2t 2000 Do đó khi chia t 2 2t 2000 cho t ta có số dư là 2000. Bài 3. a) x y; y 0 b) A 2x x y c) Cần chỉ ra giá trị lớn nhất của A , từ đó tìm được được tất cả các giá trị nguyên dương của A Từ (gt): 3x2 y2 2x 2y 1 2x2 2xy x2 2xy y2 2 x y 1
- 2x x y x y 2 2 x y 1 2 A x y 1 2 2 A 2 x y 1 2 2(do x y 1 0x, y) A 2 1 x y 1 0 x 2 +)A 2 khi 2x x y 2 3 x y; y 0 y 2 x y 1 2 1 +)A 1 khi 2x x y 1 . Từ đó , chỉ cần chỉ ra được một cặp giá trị của x và y, chẳng x y; y 0 2 1 x 2 hạn : 2 3 y 2 Vậy Achỉ có thể có 2 giá trị nguyên dương là: A 1; A 2 Bài 4. x 1 a) x3 2x2 5x 6 0 x 1 x 2 x 3 0 x 2 x 3 5 b) 5 3x 3x 5 3x 5 3x 5 3x 5 0 x 3 c) ĐKXĐ: x 1; 4; 6;3
- 3 2 4 9 x 1 x 4 x 4 x 6 3 x 3 x 6 1 1 1 1 4 1 1 x 1 x 4 x 4 x 6 3 x 3 x 6 1 4 1 3 x 3 4 x 1 x 3 3 x 1 x 1 3 x 3 3 x 1 x 3 3 x 1 x 3 3 x 1 x 3 2 x 0(tm) 4x 8x 0 4x x 2 0 x 2(tm) S 0;2 d) x2 y2 2x 4y 10 0 x2 2x 1 y2 4y 4 7 0 x 1 2 y 2 2 7 x y 1 x y 3 7 x y 3 7 x 3 Vì x, y nguyên dương nên x y 3 x y 1 0 x y 1 1 y 1 Vậy x; y 3;1
- Bài 5. S D C Q N P H A B M R a) ADQ ABR vì chúng là hai tam giác vuông và DA BD AQ AR AQR vuông cân. Chứng minh tương tự ta có: ABP ADS Do đó AP AS và APS là tam giác cân tại A b) AM và AN là đường trung tuyến của tam giác vuông cân AQR và APS nên AN SP và AM RQ Mặt khác P· AN P· AM 450 M· AN 900.Vậy tứ giác AHMN có ba góc vuông nên nó là hình chữ nhật c) Theo giả thiết: QA RS,RC SQ nên QA và RC là hai đường cao của SQR Vậy P là trực tâm SQR
- 1 d) Trong tam giác vuông cân AQR thì MA là trung điểm nên AM QR 2 MA MC,nghĩa là M cách đều A và C. Chứng minh tương tự cho tam giác vuông cân ASP và tam giác vuông SCP , ta có NA NC,nghĩa là N cách đều A và C. Hay MN là trung trực của AC e) Vì ABCD là hình vuông nên B và D cũng cách đều A và C. Nói cách khác, bốn điểm M , N,B,D cùng cách đều A và C nên chúng phải nằm trên đường trung trực AC, nghĩa là chúng thẳng hàng Bài 6. a) A 13x2 y2 4xy 2y 16x 2015 y2 4xy 2y 13x2 16x 2015 y2 2y 2x 1 2x 1 2 9x2 12x 2015 y 2x 1 2 3x 2 2 2010 2 1 Chứng tỏ A 10.dấu bằng xảy ra khi và chỉ khi x ; y 3 3 2 x 3 Vậy min A 2010 1 y 3 1 1 b) Ta có: a3 b3 ab 1 a3 b3 ab 0 2 2 1 a b a2 b2 ab ab 0 2 1 a2 b2 0 (vì a b 1) 2 2a2 2b2 1 0 2a2 2 1 a 2 1 0 (Vì b 1 a) 2 2 2 1 2a 2 4a 2a 1 0 4 a a 0a (2) 4 (2) đúng nên (1) đúng ta có đpcm.