Đề thi giao lưu học sinh giỏi - Môn: Toán 8 (đề chính thức)
Bạn đang xem tài liệu "Đề thi giao lưu học sinh giỏi - Môn: Toán 8 (đề chính thức)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_giao_luu_hoc_sinh_gioi_mon_toan_8_de_chinh_thuc.docx
Nội dung text: Đề thi giao lưu học sinh giỏi - Môn: Toán 8 (đề chính thức)
- PHÒNG GD&ĐT TAM DƯƠNG ĐỀ THI GIAO LƯU HỌC SINH GIỎI 8 NĂM HỌC 2016-2017 ĐỀ CHÍNH THỨC MÔN: TOÁN 8 Câu 1. (2,0 điểm) x y a) Tính giá trị của biểu thức P .Biết x2 2y2 xy x y 0; y 0 x y b) Tìm x, y nguyên dương thỏa mãn: x2 y2 2x 4y 10 0 Câu 2. (2,0 điểm) a) Tìm số dư trong phép chia của đa thức x 2 x 4 x 6 x 8 2017 cho đa thức x2 10x 21 b) Cho A n6 10n4 n3 98n 6n5 26 và B 1 n3 n.Chứng minh với mọi n ¢ thì thương của phép chia A cho B là bội số của 6 Câu 3. (2,0 điểm) a) Cho a và b thỏa mãn : a b 1. Tính giá trị của biểu thức B a3 b3 3ab b) Cho các số thực dương x, y, z thỏa mãn x y z 3 1 1 1 Tìm giá trị nhỏ nhất của biểu thức P x2 x y2 y z2 z Câu 4. (3,0 điểm) Cho tam giác ABC,đường trung tuyến AM. Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. a) Chứng minh DE DF 2AM b) Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh N là trung điểm của EF 2 c) Ký hiệu SX là diện tích của hình X.Chứng minh SFDC 16SAMC .SFNA Câu 5. (1,0 điểm) Trong một đề thi có 3 bài toán A,B,C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Biết rằng: - Trong số thí sinh không giải được bài A thì số thì sinh đã giải được bài B nhiều gấp hai lần số thí sinh đã giải được bài C - Số thí sinh chỉ giải được bài A nhiều hơn số thí sinh giải được bài A và thêm bài khác là 1 người - Số thí sinh chỉ giải được bài A bằng số thí sinh chỉ giải được bài B cộng với số thí sinh chỉ giải được bài C. Hỏi có bao nhiêu thí sinh chỉ giải được bài B?
- ĐÁP ÁN Câu 1. a) x2 2y2 xy x2 xy 2y2 0 x y x 2y 0 Vì x y 0 nên x 2y 0 x 2y 2y y y 1 Khi đó P 2y y 3y 3 b) Ta có: x2 y2 2x 4y 10 0 x2 2x 1 y2 4y 4 7 0 x 1 2 y 2 2 7 x y 1 x y 3 7 Vì x, y nguyên dương nên x y 3 x y 1 0 x y 3 7 và x y 1 1 x 3; y 1 Phương trình có nghiệm dương duy nhất x, y 3,1 Câu 2. a) Ta có: P(x) x 2 x 4 x 6 x 8 2017 x2 10x 16 x2 10x 24 2017 Đặt t x2 10x 21 t 3;t 7 , biểu thức P(x) được viết lại: P(x) t 5 t 3 2017 t 2 2t 2002 Do đó khi chia t 2 2t 2000 cho t ta có số dư là 2002 b) Thực hiện phép chia , ta được: Thương của A chia cho B là n3 6n2 11n 6 Ta có: n3 6n2 11n 6 n3 n 12n 6n2 6 n 1 n n 1 6 2n n2 1 Vì n 1 n n 1 là tích 3 số nguyên liên tiếp nên chia hết cho 6 Và 6 2n n2 1 chia hết cho 6 Thương của phép chia A cho B là bội số của 6 Câu 3. a) Ta có: B a3 b3 3ab a3 b3 3ab. a b a b 3 1 Vi a b 1
- 1 1 1 1 1 1 b) P x2 x y2 y z2 z x x 1 y y 1 z z 1 1 1 1 1 1 1 1 1 1 1 1 1 x x 1 y y 1 z z 1 x y z x 1 y 1 z 1 1 1 1 9 1 1 1 1 Áp dụng BĐT và . với a,b,cdương, dấu a b c a b c a b 4 a b bằng xảy ra a b c 1 1 1 1 1 1 1 1 1 Ta có: . 1 ; . 1 ; . 1 x 1 4 x y 1 4 y z 1 4 z Bởi vậy : 1 1 1 1 1 1 1 1 1 1 1 1 1 P . 1 1 1 x y z x 1 y 1 z 1 x y z 4 x y z 3 1 1 1 3 3 9 3 9 3 3 . . 4 x y z 4 4 x y z 4 4 4 2 3 Vậy MinP x y z 1 2 Câu 4. F A N E C B D M DF DC a) Lập luận được: do AM / /DF (1) AM MC
- DE BD (do AM / /DE) (2) AM BM DE DF BD DC BC Từ (1) và (2) 2(MB MC) AM BM BM DE DF 2AM b)AMDN là hình bình hành NE AE Ta có: ND AB NF FA DM AE NE NF NE NF ND AC BM AB ND ND 2 2 SAMC AM ND c) AMC : FDC Do AM ND SFDC FD FD 2 SFNA FN FNA : FDC SFDC FD 2 2 4 SAMC SFNA ND FN 1 ND FN 1 Do đó . . SFDC SFDC FD FD 16 FD FD 16 2 SFDC 16SAMC .SFNA Do x y 2 0 x y 2 4xy x y 4 16x2 y2 với x 0; y 0) Câu 5. Gọi a là số học sinh chỉ giải được bài A, b là số thí sinh chỉ giải được bài B, c là số thí sinh chỉ giải được bài C, d là số thí sinh giải được 2 bài B và C nhưng không giải được bài A. Khi đó số thí sinh giải được bài A và thêm ít nhất một trong hai bài B và C là : 25 a b c d Theo bài ra ta có: b d 2 c d a 1 25 a b c d và a b c 4b c 26 b 6 Từ các đẳng thức trên ta có: d b 2c 0 c 2 Vậy số thí sinh chỉ giải được bài B là 6 thí sinh.