Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Bắc Ninh

doc 1 trang dichphong 4130
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Bắc Ninh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_mon_toan_lop_9_nam_hoc_2012_2013_s.doc

Nội dung text: Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2012-2013 - Sở giáo dục và đào tạo Bắc Ninh

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 BẮC NINH NĂM HỌC 2012 – 2013 MÔN THI: TOÁN – LỚP 9 THCS Đề thi chính thức (Thời gian làm bài 150 phút không kể thời gian giao đề) Câu 1. (4,0 điểm) Cho biểu thức: 1. Rút gọn biểu thức P 2. Tìm giá trị nhỏ nhất của biểu thức P Câu 2. (4,0 điểm) 1. Trong mặt phẳng tọa độ (Oxy), cho parabol (P) có phương trình y = x2 và đường thẳng d có phương trình y = kx+1 (k là tham số). Tìm k để đường thẳng d cắt parabol (P) tại hai điểm phân biệt M, N sao cho . 2. Giải hệ phương trình: (Với x, y, z là các số thực dương). Câu 3. (3,0 điểm) 1. Giải phương trình nghiệm nguyên: . 2. Cho ba số a, b, c thỏa mãn Chứng minh rằng: . Câu 4. (6,0 điểm) Cho đường tròn (O; R), đường thẳng d không đi qua O cắt đường tròn tại hai điểm A, B. Từ một điểm M tùy ý trên đường thẳng d và nằm ngoài đường tròn (O), vẽ hai tiếp tuyến MN, MP của đường tròn (O) (N, P là hai tiếp điểm). 1. Dựng điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông. 2. Chứng minh rằng tâm của đường tròn đi qua ba điểm M, N, P luôn thuộc đường thẳng cố định khi M di động trên đường thẳng d. Câu 5. (3,0 điểm) 1. Tìm hai số nguyên dương a và b thỏa mãn (với [a,b] = BCNN(a,b), (a,b) = ƯCLN(a,b)). 2. Cho tam giác ABC thay đổi có AB = 6, AC = 2BC. Tìm giá trị lớn nhất của diện tích tam giác ABC.