Đề cương ôn tập Toán 7 - Học kỳ 2
Bạn đang xem tài liệu "Đề cương ôn tập Toán 7 - Học kỳ 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_tap_toan_7_hoc_ky_2.doc
Nội dung text: Đề cương ôn tập Toán 7 - Học kỳ 2
- ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Năm học 2017 - 2018 I. Đại số: Bài 1: Dưới đây là bảng liệt kê số ngày vắng của 40 học sinh trong một học kỳ: 1 0 2 1 2 3 4 2 5 0 0 1 2 1 0 1 2 3 2 4 2 1 0 2 1 2 2 3 1 2 5 1 0 4 4 2 3 1 1 2 a) Dấu hiệu điều tra ở đây là gì, có tất cả bao nhiêu giá trị của dấu hiệu? b) Lập bảng tầng số. c) Vẽ biểu đồ hình chữ nhật biểu diễn bảng tần số trên. d) Tìm mốt, lập bảng tính số trung bình cộng số ngày vắng mặt của 40 học sinh. Bài 2: Sau cuộc phát động trồng cây tại 1 trường học, nhà trường thống kê kết quả về số cây trồng được của mỗi lớp ở bảng sau: Giá trị (X) 30 35 40 45 50 55 Tần số (n) 5 4 7 11 9 1 N = 37 a) Dấu hiệu điều tra ở đây là gì? Có bao nhiêu lớp được điều tra? b) Vẽ biểu đồ hình chữ nhật c) Tìm mốt, và tìm số trung bình cộng bằng công thức (làm tròn đến hàng đơn vị). d) Nhận xét về số cây trồng được của các lớp trong đợt thi đua này. Bài 3: Thu gọn các đơn thức sau rồi chỉ rõ phần hệ số, phần biến và tìm bậc. 5 2 3 8 a) A = x3.( x2 y).( x3 y4 ) ; b) B = ( x5 y4 ).(xy2 ).( x2 y5 ) 4 5 4 9 Bài 8: Tìm bậc của các đa thức sau: a) C = 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3 b) D = 15x2y3 + 7y2 - 8x3y2 - 12x2 + 11x3y2 - 12x2y3 c) E = 3x5y + 1 xy4 + 3 x2y3 - 1 x5y + 2xy4 - x2y3 3 4 2 3 a Bài 4: Cho các biểu thức : A=x3 y2 ( 3xy5 ) ; B 1 xy ; C x2 y ; D ( 5x2 y)z3 5 2 (với x, y, z là các biến; a là hằng số). Biểu thức nào là đơn thức? Bài 5: Tính giá trị của các biểu thức đại số sau: 1 1 a) F 3x3 y 6x2 y2 3xy3 tại x ;y ; 2 3 b) G x2 y2 xy x3 y3 tại x 1 ; y 3 Bài 6: 1
- 1 a) Cho H(x) = x4 + 2x2 + 1 ; tính H(0), H(-1), H ( ) 2 1 b) Cho K(y) = y4 + 4y3 + 2y2 - 4y + 1 ; tính K(-2), K(1), K ( ) 3 Bài 7: a) Cho M = 4x2 - 5xy + 3y2 và N = 3x2 + 2xy + y2 . Tính: M + N ; M = N; N - M 5 1 3 b) Cho A(x) 8x4 9x x3 và B(x) = 3x4 - x3 2x2 3 2 5 4 Bài 8: cho P(x) = x - 2x2 + 3x5 + x4 + x - 1 ; Q(x) = 3 - 2x + 4x4 - 2x2 - 3x5 - x4 + 4x2 a) Thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm của biến. b) Tính P(x) - Q(x): P(x) + Q(x). Bài 9: Cho đa thức B(y) = y4 + 2y3 - 2y2 - 6y + 5 Trong các số sau 1 ; - 1 ; 2 ; - 2, số nào là nghiệm của B(y)? Bài 10: Tìm nghiệm của các đa thức sau: a) F(x) = 3x - 6 ;b) U(y) = -5y + 30 ;c) G(z) = (z - 3) (16 - 4z) Bài 11: Chứng tỏ rằng các đa thức sau không có nghiệm: a) F(x) = 3x8 + 6 ; b)U(y) = - 5x4 ; c) G(z) = (x2 + 3) (-6 - 4x4) Bài 12: a) Cho đa thức B(y) = my - 3; tìm m để biết B(-1) = 2 b) Cho đa thức D(x) = -2x2 + ax -7a + 3 ; tìm a biết rằng D(x) có nghiệm là -1. Bài 13: Cho các đa thức A(x) = 5x3 - 7x2 + x + 7; B(x) = 7x3 - 7x2 + 2x + 5 ; C(x) = 2x3 + 4x + 1 1 a) Tính A(-1) ; B() ; C(0) 2 b) Tính M(x) = A(x) - B(x) + C(x) ; N(x) = 3C(x) - 2A(x) c) Tìm bậc của M(x) và tìm nghiệm của M(x). Bài 14: Cho hai đa thức: P(x) = 2x2 (x-1) - 5(x + 2) - 2x(x-2) ; Q(x) = x2(2x - 3) - x(x + 1) - (3x - 2) a) Thu gọn và sắp xếp P(x) và Q(x) theo lũy thừa giảm dần của biến. b) Tính H(x) = P(x) - Q(x) và tìm nghiệm của H(x). II. Hình học: Bài 1: a) Tam giác ABC như hình vẽ sau có vuông không, vì sao? B 3.5 4.5 A 5.5 C 2
- b) cho hình vẽ sau, hãy chứng minh AB2 + DC2 = AD2 + BC2 B A O C D Bài 2: Cho tam giác ABC cóA 600 , C 500 , và AC = 4cm. Tia phân giác của góc B cắt AC tại D. Tính số đo góc ADB? Bài 3: a) Vẽ tam giác đều ABC có cạnh bằng 4cm. Lấy các điểm D,E,F theo thứ tự thuộc các cạnh AB, BC, CA sao cho AD = BE = CF = 1,5cm. b) Chứng minh rằng tam giác DEF là tam giác đều. Bài 4: Cho tam gics ABC cân tại A, đường cao AH. Biết AB = 5cm; BC = 6cm. a) Tính độ dài các đoạn thẳng BH, AH? b) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A,G,H thẳng hàng. c) Chứng minh ABG ACG . Bài 5: Cho tam giác ABC vuông tại A. Từ 1 điểm K bất kỳ thuộc cạnh BC, vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh: a) AB// HK. b) Tam giác AKI cân. c) BAK AIK d) AIC = AKC. Bài 6: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC. a) Chứng minh ABM = ACM. b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK. c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh tam giác IBM cân. Bài 7: Cho tam giác ABC cân tại A (A <900), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE. a) Chứng minh: ABD = ACE. b) Chứng minh AED cân. c) Chứng minh AH là đường trung trực của ED. d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh ECB DKC Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh. a) HB = CK. b) AHB AKC . c) HK //DE 3
- d) AHE = AKD. e) AI DE, I là giao điểm của DK và EH. Bài 9: Cho góc x Oy và tia phân giác Ot. Trên tia Ot lấy điểm M bất kỳ; trên các tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB; gọi H là giao điểm của AB và Ot. Chứng minh: a) MA = MB. b) OM là đường trung trực của AB. c) Cho biết AB = 6cm, OA = 5cm. Tính OH Bài 10: Cho tam giác ABC vuông tại B, AM là trung tuyến. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. Chứng minh: a) ABM = ECM b) AC > CE c) BAM MEC d) BE // AC e) EC BC Bài 11: Cho tam giác ABC cân ở A, AB = AC = 5cm. Kẻ AH BC (H BC). a) Chứng minh BH = HC và BAH CAH . b) Tính độ dài BH biết AH = 4cm. c) Kẻ HD AB (D AB); kẻ HE AC (E AC); tam giác ADE là tam giác gì, vì sao? Bài 12: Cho tam giác ABC, AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) Tam giác ADE cân b) ABD = ACE. Bài 13: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh: a) BE = CD b) BMD = CME. c) AM là tia phân giác của góc BAC. Bài 14: Cho tam giác ABC, AB < AC, AD là tia phân giác của góc A. Tên tia AC lấy điểm E sao cho AE = AB. a) Chứng minh BD = DE b) Gọi K là giao điểm của các đường thẳng AB và ED. Chứng minh DBK = DEC. c) Tam giác AKC là tam giác gì? Chứng minh: d) Chứng minh: AD KC. Bài 15: Cho tam giác ABC vuông tại A. Đường trung trực của AB cắt AB tại E và BC tại F. a) Chứng minh FA = FB b) Từ F vẽ FH AC (H AC). Chứng minh FH EF. c) Chứng minh FH = AE. BC d) Chứng minh EH = và EH //BC. 2 Bài 16: Cho tam giác ABC, AB < AC và AM là tia phân giác của góc A. Trân AC lấy điểm D sao cho AD = AB. a) Chứng minh BM = MD b) Gọi K là giao điểm của AB và DM. Chứng minh DAK = BAC. c) Chứng minh tam giac AKC cân. d) So sánh KM và CM. 4