Một số Đề tuyển sinh vào lớp 6 - Trường THCS Cao Xuân Huy - Môn toán

doc 52 trang hoaithuong97 29093
Bạn đang xem 20 trang mẫu của tài liệu "Một số Đề tuyển sinh vào lớp 6 - Trường THCS Cao Xuân Huy - Môn toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docmot_so_de_tuyen_sinh_vao_lop_6_truong_thcs_cao_xuan_huy_mon.doc

Nội dung text: Một số Đề tuyển sinh vào lớp 6 - Trường THCS Cao Xuân Huy - Môn toán

  1. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO DIỄN CHÂU ĐỀ TUYỂN SINH VÀO LỚP 6 TRƯỜNG THCS CAO XUÂN HUY NĂM HỌC 2011-2012 Môn Toán - (Thời gian làm bài 90 phút) Bài I. (3,0 điểm): Tìm x, biết: 7 3 1 2 2 a) ; b) x x : x : 255 ; x 12 4 7 9 Bài II. (6,0 điểm): 1. Tính: 11 7 1 1 1 1 3 a) (2 ); b) 1 : (15,75 15 ) 2 : (7 7,25); 9 6 3 21 4 12 4 2. Cho dãy số: 1,1; 2,2; 3,3; 4,4; .; 97,9; 99,0. a) Số thứ 50 của dãy là số nào? b) Dãy số này có bao nhiêu số? c) Tính nhanh tổng của dãy số trên. Bài III. (3,0 điểm): Tổng của hai số là 201. Lấy số lớn chia cho số bé được thương là 5 và dư 3. Tìm hai số đó. Bài IV.( 3,0 điểm): Một ô tô đi từ tỉnh A đến tỉnh B dự định hết 4 giờ. Nếu mỗi giờ ô tô đi thêm 14 km thì thời gian đi từ A đến B sớm hơn dự định 1 giờ. Hãy tính khoảng cách AB giữa hai tỉnh. Bài V. (5,0 điểm): Hình thang ABCD có đáy AD dài gấp 3 lần đáy BC. Hai đường chéo AC và BD cắt nhau ở I. a) Tìm các cặp tam giác tạo thành trong hình thang có diện tích bằng nhau (Yêu cầu có giải thích). b) Tính diện tích tam giác AIB, biết diện tích hình thang là 48cm2 . Hết
  2. HƯỚNG DẪN CHẤM Bài I. Hướng dẫn giải Điểm Hướng dẫn giải Điểm Tìm x: 7 3 1 2 2 a) b) x x : x : 255 x 12 4 7 9 x x 7 x 9 x 3 7 12 0,5 255 0,25 7 12 1 8 2 x 28 0,5 x 8 x 7 x 36 3 255 0,25 8 8 8 x 28 ; 0,5 51x 0,25 255 8 51x 255 8 0,25 255 8 x 51 0,25 x 40 0,25 Bài II. 1. Tính: Hướng dẫn giải Điểm Hướng dẫn giải Điểm 11 7 1 1 1 1 3 a) 2 b) 1 : (15,75 15 ) 2 : (7 7,25) 9 6 3 21 4 12 4 11 7 5 0,5 22 3 1 25 3 1 0,5 = = : 15 15 : 7 7 9 6 3 21 4 4 12 4 4 11 35 22 35 22 2 25 2 22 4 25 4 = 0,5 =: : = 0,5 9 18 18 18 21 4 12 4 21 2 12 2 57 19 1 44 25 88 175 263 11 = 3 0,5 = 6 0,5 18 6 6 21 6 42 42 42 42 2. Cho dãy số: 1,1; 2,2; 3,3; 4,4; .; 97,9; 99,0. a) Hiệu của hai số liền nhau: 2,2 – 1,1 = 1,1 (cho 0,25đ) Số thứ 50 của dãy số: 50 1 1,1 1,1 55 ; (cho 0,75 đ) b) Số các số của dãy số trên là: 99 1,1 :1,1 1 90 (số) (cho 1,0 đ) c) Tổng các số của dãy số trên là: 90 99 1,1 4504,5 . (cho 1,0 đ) 2 Bài III. Giải thích: Thương hai số là 5 và dư 3 có nghĩa là số lớn bớt đi 3 thì phần còn lại gấp 5 lần số bé. (cho 0,5 đ) Ta có sơ đồ: Số lớn (cho 0,5 đ) Số bé Giải: Số bé là: 201 – 3 : (5 + 1) = 33 (cho 0,75 đ)
  3. Số lớn là: 33 5 + 3 = 168 (cho 0,75 đ) Đáp số: Số lớn: 168 Số bé: 33 (cho 0,5 đ) Bài IV. Khi mỗi giờ vận tốc tăng thêm 14 km thì A B thời gian đi từ A đến B là: 4 – 1 = 3 (giờ). (cho 0,5 điểm) A B Trong thời gian 3 giờ quãng đường ô tô đi thêm được là: Vẽ hình biểu diễn đúng, (cho 0,5 đ) 14 km 3 = 42 km; (cho 0,75 điểm) số km đi thêm được đó chính bằng số km ô tô đi được trong 1 giờ khi vận tốc chưa tăng.(cho 0,5 điểm) Khoảng cách AB giữa hai tỉnh là: 42km 4 = 168km. (cho 0,75 điểm) Bài V. B C a) Chỉ ra mỗi cặp và có giải thích đúng cho 1 điểm. Nếu chi ra được mà không I giải thích hoặc giải thích sai cho 0,5 đ. A D Các cặp tam giác có diện tích bằng nhau là: (S là ký hiệu diện tích) * SABC = SBDC (Vì cùng chiều cao và cùng đáy BC) * SBAD = SCAD (Vì cùng chiều cao hình thang và cùng đáy AD) * SBIA = SCID (Vì 2 tam giác ABC và DBC có diện tích bằng nhau mà hai tam giác này có chung tam giác BIC). b) Vì AD gấp 3 lần BC nên SCAD gấp 3 lần SABC. SABC = 48 : (3+1) = 12(cm2 ) SCAD = 12 3 = 36(cm2 ) Mà SCAD = SBAD nên SBAD = 36cm2 . (cho 0,5 đ) * Xét BAC và DAC : 2 tam giác này cùng đáy AC SCAD gấp 3 lần SBAC => chiều cao CAD gấp 3 lần chiều cao BAC.(cho 0,5đ) * Xét BAI và DAI: 2 tam giác này cùng đáy AI. DAI có cùng chiều cao với DAC BAI có cùng chiều cao với BAC Suy ra chiều cao DAI gấp 3 lần chiều cao BAI (cho 0,5 đ) => diện tích DAI gấp 3 lần diện tích BAI . Mà SBAD = 36cm 2 Vậy diện tích tam giác AIB là: 36 : (3 + 1) = 9(cm2 ) (cho 0,5 đ) Lưu ý: - Điểm toàn bài là tổng các điểm thành phần không làm tròn, lấy đến hai chữ số thập phân. - Trên đây chỉ nêu ra một cách giải, nếu học sinh giải cách khác đúng vẫn cho điểm tối đa; riêng ý 2.c) bài II học sinh giải bằng cách thông thường chỉ cho 0,5 đ. PHÒNG GD&ĐT DIỄN CHÂU
  4. ®Ò tuyÓn sinh vµo líp 6 tr­êng THCS Cao Xu©n Huy N¨m häc 2010 – 2011 M«n To¸n (Thêi gian lµm bµi 90 phót) C©u 1. (6 ®iÓm): 1) TÝnh b»ng c¸ch hîp lý: a)2011 2010 1 ; b) 10,11 + 11,12+ 12,13 + + 97,98 + 98,99 + 99,100. 2009 2011 2010 2) T×m x, biÕt: x 35 9 x 5 a) ; b) ; c) x + x : 5 7,5 + x : 2 9 = 315. 13 91 13 x 6 C©u 2. (4 ®iÓm): Cuèi n¨m häc 2009 – 2010 kÕt qu¶ xÕp lo¹i häc lùc cña häc sinh khèi 5 mét tr-êng TiÓu häc ®¹t ®-îc 1 sè em lo¹i giái, 1 sè em lo¹i kh¸, 70 em lo¹i trung 5 3 b×nh, kh«ng cã em nµo xÕp lo¹i yÕu, kÐm. a) TÝnh sè häc sinh khèi 5 cña tr-êng? b) TÝnh sè häc sinh xÕp lo¹i giái; kh¸? C©u 3. (2 ®iÓm): Mét th¸ng nµo ®ã cña mét n¨m cã ba ngµy chñ nhËt lµ ngµy ch½n. Nh- vËy ngµy 20 cña th¸ng ®ã lµ ngµy thø mÊy trong tuÇn? C©u 4. (4 ®iÓm): Mai vµ Lan cã nhµ c¸ch nhau 1200 m, ®i vÒ phÝa nhµ b¹n. Mai ®i lóc 9 giê, Lan ®i sau 5 phót. Däc ®-êng kh«ng tr«ng thÊy nhau. Mçi ng-êi cø ®Õn nhµ b¹n råi lËp tøc quay l¹i. LÇn nµy hai b¹n gÆp nhau. Hái lóc gÆp nhau ®ã lµ mÊy giê, biÕt r»ng mçi phót Mai ®i ®-îc 60 m, Lan ®i ®-îc 90 m. C©u 5. (4 ®iÓm): Cho tam gi¸c ABC. Trªn AB lÊy ®iÓm D sao cho AD = 1 AB vµ trªn BC 3 lÊy ®iÓm E sao cho EC = 1 BC. Nèi A víi E, C víi D chóng c¾t nhau ë I. 3 a) So s¸nh diÖn tÝch hai tam gi¸c AID vµ CIE. b) Nèi D víi E. Chøng tá DE song song víi AC.
  5. h­íng dÉn chÊm ®Ò to¸n tuyÓn sinh vµo líp 6 tr­êng THCS Cao Xu©n Huy BiÓu C©u ý H-íng dÉn gi¶i ®iÓm TÝnh b»ng c¸ch hîp lý: a) 2011 2010 1 = 2011 (2009 1} 1 0,75 2009 2011 2010 2009 2011 2010 2009 2011 2011 1 2009 2011 2010 = = = 1 0,75 2009 2011 2010 2009 2011 2010 b) NhËn xÐt: D·y c¸c sè tõ 10,11 ®Õn sè 98,99 cã tÊt c¶ 89 sè ®-îc viÕt theo quy luËt c¸ch ®Òu, sè ®øng sau lín h¬n sè ®øng tr-íc liÒn kÒ 1,01. Riªng sè 99,100 kh«ng thuéc quy 0,5 1 luËt cña d·y sè trªn. V× sè 99,100 lín h¬n sè 98,99 lµ 0,11. Ta cã thÓ viÕt d·y tæng c¸c sè trªn nh- sau: 10,11 + 11,12 + 12,13 + + 97,98 + 98,99 + (100 – 0,9) = 10,11 + 11,12 + 12,13 + + 97,98 + 98,99 + 100 – 0,9 Khi ®ã sè 100 thuéc quy luËt cña d·y sè trªn, khi ®ã d·y sè 0,5 nµy cã 90 sè. VËy tæng trªn ®-îc tÝnh lµ: = (10,11 + 100) 45 – 0,9 1 = 4954,95 – 0,9 = 4954,05 0,5 2 T×m x, biÕt: x 35 5 a) = => x = 5 1,0 13 91 13 9 x 5 b) 13 x 6 9 x 6 = 13 x 5 0,25 54 6 x 65 5 x 0,25 11 x 11 0,25 x 1 0,25 c) x x : 5 7,5 x : 2 9 315 x x x 7,5 9 315 5 2 0,25 x 1,5 x 4,5 x 315 0,25 7 x 315 0,25 x 45 0,25 Tæng sè phÇn xÕp lo¹i giái vµ lo¹i kh¸ cña häc sinh khèi 5 1 1 8 lµ: 0,75 5 3 15 70 em xÕp lo¹i trung b×nh øng víi sè phÇn lµ: 8 7 1 - (sè häc sinh khèi 5) 0,75 2 15 15 a) Sè häc sinh khèi 5 lµ: 70 : 7 15 = 150 (em) 1,0 1 b) Sè häc sinh xÕp lo¹i giái lµ: 150 = 30 (em) 5 0,5 1 Sè häc sinh xÕp lo¹i kh¸ lµ: 150 = 50 (em) 0,5 3
  6. §¸p sè: a) 150 em; b) Giái: 30 em, Kh¸: 50 em. 0,5 - V× cã ba ngµy chñ nhËt lµ nh÷ng ngµy ch½n nªn th¸ng ®ã ph¶i cã 5 ngµy chñ nhËt (kh«ng thÓ cã 4 ngµy chñ nhËt, 0,5 trong ®ã cã 3 ngµy “ch½n” vµ 1 ngµy “lΔ. vi c¸c ngµy chñ nhËt trong th¸ng lµ ngµy “ch½n” “lΔ nèi tiÕp nhau). - Ngµy chñ nhËt ®Çu tiªn cña th¸ng ®ã ph¶i lµ ngµy mång 2 0,5 cña th¸ng ®Ó cã 3 ngµy chñ nhËt lµ ngµy “ch½n”. Ngµy chñ nhËt I II III IV V 3 Ngµy trong th¸ng 2 9 16 23 30 0,5 (NÕu ngµy chñ nhËt ®Çu tiªn cña th¸ng r¬i vµo ngµy mång 1 hay ngµy mång 3 cña th¸ng th× sÏ cã 3 ngµy chñ nhËt lµ ngµy “lΔ. Ngµy chñ nhËt ®Çu tiªn kh«ng thÓ r¬i vµo ngµy mång 4 v× nh- vËy th¸ng ®ã chØ cã 4 ngµy chñ nhËt). - C¨n cø vµo b¶ng nªu trªn ngµy 20 cña th¸ng ®ã lµ ngµy thø 0,5 n¨m trong tuÇn. Trong 5 phót Mai ®i ®-îc qu·ng ®-êng lµ: 60 5 = 300 (m) 0,5 Mai vµ Lan gÆp nhau sau khi Lan ®i ®-îc mét thêi gian lµ: (1200 – 300) : (60 + 90) = 6 (phót). 1,0 Mai vµ Lan gÆp nhau lÇn thø nhÊt vµo lóc: 9 giê 5 phót + 6 phót = 9 giê 11 phót 0,5 4 Mai vµ Lan céng l¹i ®i ®-îc 2 lÇn kho¶ng c¸ch 1200 m trong mét thêi gian lµ: 1200 2 : (60 + 90) = 16 phót. 1,0 Mai vµ Lan gÆp nhau lÇn thø hai vµo lóc: 9 giê 11 phót + 16 phót = 9 giê 27 phót. 0,75 §¸p sè: 9 giê 27 phót. 0,25 A VÏ h×nh ®óng. 0,5 a) DiÖn tÝch tam gi¸c ACD = 0,5 D 1 diÖn tÝch tam gi¸c ABC. I 3 0,5 DiÖn tÝch tam gi¸c AEC = 1 3 B E C diÖn tÝch tam gi¸c ABC. 0,5 VËy diÖn tÝch tam gi¸c ACD = diÖn tÝch tam gi¸c AEC. 0,5 5 Mµ hai tam gi¸c ACD vµ AEC cã chung tam gi¸c AIC. VËy diÖn tÝch tam gi¸c AID b»ng diÖn tÝch tam gi¸c EID. b) DiÖn tÝch tam gi¸c ADC b»ng diÖn tÝch tam gi¸c AEC. Hai tam gi¸c nµy cã chung c¹nh ®¸y AC nªn chiÒu cao cña 1,0 hai tam gi¸c trªn h¹ tõ ®Ønh D vµ E còng b»ng nhau. Suy ra tø gi¸c ACED lµ h×nh thang vµ DE vµ AC lµ ®¸y bÐ 0,5 vµ ®¸y lín nªn chóng song song víi nhau. VËy DE song song víi AC. L-u ý:
  7. Häc sinh gi¶i c¸ch kh¸c ®óng vÉn cho ®iÓm tèi ®a. Với c©u 1 häc sinh gi¶i b»ng c¸ch b×nh th-êng, kÕt qu¶ ®óng chØ cho mét nöa sè ®iÓm. PHÒNG GD&ĐT VĂN LÂM ĐỀ THI TUYỂN SINH VÀO LỚP 6 Trường THCS Lương Tài MÔN : Toán Thời gian làm bài : 60 phút Họ và tên : Lớp : A. TRẮC NGHIỆM: (2 điểm) Chọn đáp án đúng ghi vào giấy thi cho các câu hỏi sau: Câu 1: Tỉ số phần trăm của 135 và 200 là: A. 67,5 % B. 29,8% C. 13,5% D. 6,75% 5 Câu 2: Một vườn hoa hình chữ nhật có chu vi 144 m. Chiều dài bằng chiều 3 rộng. Tìm chiều dài vườn hoa đó? A. 90m B. 27m C. 45m D. 54m Câu 3: Chữ số cần viết vào ô trống của số 17 để được một số chia hết cho cả 2 và 3 là bao nhiêu? A. 4 B. 0 C. 7 D. 6 18 14 2010 2010 Câu 4: Trong các phân số : ; ; ; phân số nào nhỏ nhất? 17 14 2011 2015 18 14 2010 A. B. C. D. 17 14 2011 2010 2015 B: TỰ LUẬN (8 điểm) Câu 1. (1 điểm) Tính giá trị biểu thức sau: (32,5 + 28,3 2,7 – 108,91) 2013 Câu 2. (1 điểm) Tìm x: 12 2 7 a/ x - = 5 b/ : x + = 2 7 3 5 Câu 3. (2 điểm) T¹i mét kho g¹o, lÇn thø nhÊt ng-êi ta xuÊt ®i 25 tÊn g¹o, lÇn thø hai ng-êi ta xuÊt ®i 20 tÊn g¹o. Sè g¹o cßn l¹i trong kho b»ng 97% sè g¹o cã lóc ®Çu. Hái lóc ®Çu trong kho cã bao nhiªu tÊn g¹o ?
  8. Câu 4. (2 điểm) Cho tam giác MNQ vuông ở M, có cạnh MN bằng 21cm, MQ bằng 20cm. Điểm K nằm trên cạnh MN sao cho KM bằng 5,25cm. Từ K kẻ đường thẳng song song với MQ cắt cạnh NQ ở E. Tính độ dài đoạn KE? Câu 5. (1 điểm) Tính nhanh 1 5 11 19 29 41 55 71 89 2 6 12 20 30 42 56 72 90 BiÓu ®iÓm chÊm:
  9. A. Trắc nghiệm: Câu 1 Câu 2 Câu 3 Câu 4 D C A D B. Tự luận: Câu 1. (1 điểm) (32,5 + 28,3 2,7 – 108,91) 2013 = (32,5 + 76,41 – 108,91) 2013 0,25 điểm = ( 108,91 – 108,91) 2013 0,25 điểm = 0 2013 0,25 điểm = 0 0,25 điểm Câu 2: 2 điểm 5 12 2 7 a/ x - = b/ : x + = 2 7 3 5 5 6 x = 0,5 điểm 12 7 2 2 7 : x = 0,25 điểm 7 5 3 47 x = 0,5 điểm 12 11 14 : x = 0,25 điểm 7 15 12 11 x = : 0,25 điểm 7 15 x = 180 0,25 điểm 77 Câu 3: (2 điểm): Sè g¹o xuÊt ®i trong hai lÇn lµ: 0,25 ® 25 + 20 = 45 (tÊn) 0,25 ® Sè g¹o xuÊt ®i chiÕm sè phÇn tr¨m sè g¹o ban ®Çu 0,25 ® lµ: 0,25 ® 100 - 97 = 3 (%) 0,25 ® Sè g¹o lóc ®Çu trong kho cã lµ: 0,5 ® 45 : 3 X 100 = 1500 (tÊn) 0,25 ® §¸p sè: 1500 tÊn Câu 4. (2 điểm): GV tự chia nhỏ thang điểm. - Từ E hạ đường cao EH vuông góc với MN thì độ N dài đoạn thẳng EH bằng độ dài đoạn thẳng KM và
  10. bằng 5,25cm. - Diện tích tam giác EMQ là: (20 x 5,25) : 2 = 52,5 (cm2) - Diện tích tam giác MNQ là: (20 x 21) : 2 = 210 (cm2) - Diện tích tam giác EMN là: K E 210 – 52,5 = 157,5 (cm2) - Độ dài đoạn thẳng KE là: M 157,5 x 2 : 21 = 15 (cm) Q Đáp số: 15 cm Câu 5. (1 điểm) GV tự chia nhỏ thang điểm. 1 5 11 19 29 41 55 71 89 2 6 12 20 30 42 56 72 90 = (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) + (1-1 ) 2 6 12 20 30 42 56 72 90 = (1+1+1+1+1+1+1+1+1) – (1 +1 +1 +1 +1 +1 +1 +1 +1 ) 2 6 12 20 30 42 56 72 90 1 1 1 1 1 1 1 1 1 = 9 – ( ) 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = 9 – (1- ) 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 = 9 – (1 - 1 ) 10 = 9 - 9 10 = 81 10 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI KHẢO SÁT CHỌN LỚP ĐẦU Trường THCS NĂM MÔN TOÁN – LỚP 6 Bài 1 : (2 điểm ) Tính 2 3 5 a, = b, 65,42x3,5:3434,55= 3 4 6 c, (27,09 + 258,91) 25,4 d, (25,4 – 12,34) :0,5 Bài 2 : (2 điểm ) Tính nhanh a, 17,6-5,3+16,8-7,6+15,3-6,8 b,3,54x73+0,46x25+3,54x26+0,46x75+3,54 Bài 3: (3 điểm ) Một thửa ruộng hình thang ABCD ; AB =36m là đáy nhỏ ,CD là đáy lớn có CD=2AB .Nếu kéo dài CD thêm một đoạn CM=6m ta được diện tích tam giác BCM =48 m2 a, Tính chiếu cao của hình thang ABCD? b, Tính diện tích hình thang ABCD c, Thửa ruộng được trồng lúa tính xem số lúa thu hoạch được của thửa ruộng biết rằng mỗi a thu hoạch được 45 kg lúa ( Mỗi a=100 m2)
  11. Bài 4: (4 3 điểm ) Cho hình vuông ABCD có cạnh dài 6cm trên đoạn BD lấy điểm E và D sao cho BE=ED=PD a, Tính diện tích hình vuông ABCD b, Tính diện tích hình AECP c, M là điểm chính giữa cạnh PC N là điểm chính giữa DC ,MD và NP cắt nhau tại I .So sánh diện tích tam giác IPM và tam giác IDN Đáp án : Bài 1 : a, 7 b, 15 c, 7264,4 d, 26,12 12 Bài 2 : a,=30 b,=354 1 Bài 3 : a, Diện tích tam giác BCM =48 = CM.h h 48.2 : 6 16m 2 h cũng chính là chiều cao của hình thang ABCD AB CD .h B, Diện tích hình thang ABCD = mà CD=2AB=2.36=72m 2 36 72 16 Vậy diện tích hình thang ABCD= 864m2 2 C,Tính số lúa thu hoạch được : Đổi 864m2:100=8,64 a Vậy số lúa thu hoạch được là : 8,64.45=388,8 kg Bài 4 : Giải : a, diện tích hình vuông ABCD =6x6=36 (cm2 ) b, Diện tích hình AECP : Diện tích tam giác ABD =36 :2=18 (cm2) Có ba tam giác ABE,AEP,APD có cùng chiều cao hạ từ A xuống cạnh BD mà BE=EP=PD nên ba tam giác này có cùng diện tích bằng nhau nên diện tích tam giác AEP =18 : 3=6cm2 mà diện tích hình AECP =2 lần diện tích tam giác AEP Vậy diện tích hình AECP=2x6=12 (cm2 )
  12. C, Vì N là trung điểm của DC Nên diện tích tam giác PCN = diện tích tam giác DPN =6:2=3 cm2 (hai tam giác có cùng chiều cao hạ từ P xuống CD) Vì M là trung điểm của PC Nên diện tích tam giác PMD = diện tích tam giác DMC =6:2=3 cm2 (hai tam giác có cùng chiều cao hạ từ D xuống CP) Diện tích tam giác DMN=diện tích tam giác MNC =3:2=1,5 (cm2) ( vì hai tam giác có cùng chiều cao hạ từ M xuống CD và DN=NC) Diện tích tam giác PMN=diện tích tam giác MNC =3:2=1,5 (cm2) ( vì hai tam giác có cùng chiều cao hạ từ N xuống CP và PM=MC) S PMN S IMP S IMN 1,5 S IMP 1,5 S IMN S IMP S IDN S DMN S IDN S IMN 1,5 S IDN 1,5 S IMN SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐỀ (&ĐA) KHẢO SÁT CHẤT LƯỢNG ĐÀU NĂM LỚP 6 MÔN: TOÁN I) PHẦN TRẮC NGHIỆM: (3 điểm) Hãy chọn và ghi A, B hoặc C đặt trước đáp án đúng trong các câu sau:. Câu 1: Chữ số 3 trong số 2,103 có giá trị là: A. 3 B. 3/100 C. 3/1000 Câu 2: Số thích hợp điền vào chỗ chấm của 2014 dm3 = m3 là: A. 20,14 B. 2,014 C.201,4 Câu 3: Số bé nhất trong các số sau: là: Câu 4: Diện tích của hình tròn có bán kính 10 cm là: A. 3,14 cm2 B. 31,4 cm2 C. 314 cm2 Câu 5: Tổ em có 4 bạn nữ và 5 bạn nam. Vậy tỉ số phần trăm giữa số bạn nữ so với số bạn nam là: A. 80% B. 0,8 % C. 45% Câu 6: Nếu cạnh của một hình lập phương gấp lên 2 lần thì diện tích toàn phần của hình lập phương đó thay đổi như thế nào? A. Gấp lên 2 lần B. Gấp lên 4 lần C. Gấp lên 8 lần Đáp án Phần I Câu 1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 C B A C A C II) PHẦN TỰ LUẬN: (7 điểm) Câu 1. Đặt tính rồi tính (2 điểm):
  13. a) 73,53- 41,08 b) 21,8 x 4,3 c) 91,44 : 3,6 d) 2 giờ 35 phút + 4 giờ 15 phút Giải: a/ 73,53- 41,08 = 32,45 b) 21,8 x 4,3 = 93,74 c) 91,44 : 3,6 = 26,4 d) 2 giờ 35 phút + 4 giờ 15 phút = 6 giờ 50 ‘ Câu 2: Tim x, biết: (1 điểm) ĐA: x = 1/4 Câu 3: Thư viện trường Trung học cơ sở M mới nhận về tổng số 728 quyển sách gồm hai loại: sách giáo khoa và sách tham khảo. Trong đó số sách giáo khoa bằng 2/5 số sách tham khảo. Tính số sách giáo khoa, số sách tham khảo? (2 điểm) Giải: Tông số SGK + STK = 2 + 5 = 7 (phần) Số SGK là (728:7) x 2 = 208n (quyển) Số STK là ( 728: 7) x 5 = 520 (quyển) ĐS 208 và 520 Câu 4: Cho tam giác ABC có cạnh đáy BC dài 30 cm. Chiều cao AH bằng 2/3 độ dài đáy BC. (2 điểm) a) Tính diện tích tam giác ABC. b) Kéo dài đáy BC về phía C một đoạn CM (Như hình vẽ). Tính độ dài đoạn CM, biết diện tích tam giác ACM bằng 20% diện tích tam giác ABC. Giải: GIẢI BỘ ĐỀ THI VÀO TRƯỜNG THCS TRẦN ĐẠI NGHĨA Đây là bộ đề toán cho HS lớp 5 thi vào 6 trường THCS khá hay nên NST giải và giới thiệu để các bạn tham khảo (Hình vẽ đã chỉnh lại cho dễ xem)
  14. Bài giải chi tiết (của NST) Câu 1 Đáp số A = 62,2 B = 590/66 Câu 2:
  15. Theo hình vẽ : Hình Tròn = 5 hình tam giác 1 tam giác = 1250:5 = 250 (g) 1 hình lập phương = 3 hình tam giác 1 hình lập phương =250 x3 = 750 (g) 1 hình bán nguyệt = 2 hình lập phương Hình bán nguyệt = 750x2 = 1500 (g) 1 hình bán nguyệt + 1 hình lập phương = 1500 + 750 = 2250 (g) Quả cân = 2250 – 1250 = 1000 (g) (ĐS) Câu 3: Theo đề ta có sơ đồ sau: Có 4 người được nhận 8 cái kẹo Câu 4 : Theo đề co 5 đội đấu vòng bảng tổng số có 10 trận đấu - Nếu trận đấu có thắng thua thì 2 đội tương ứng có 3 + 0 = 3 điểm - Nếu trận đấu hòa thi 2 đội có tổng điểm 1 + 1 = 2 điểm - Nếu 10 trận đều phân thắng bại thì phải có 10 x 3 = 30 điểm. Nhưng thực tề Chỉ có 29 điểm suy ra có 1 trận hòa* (xem bảng liệt kê dưới đây:) Tên đội Đội A Đội B Đội C Đội D Đội E Số điểm 10 7 6 6 0 Tổng sô : 29 Số trận thắng 3 2 2 2 Số trận thua 3 3 5 Số trận hòa 1 1 Giải thích cho bảng kê trên: - Đội E có 0 điểm đội này 5 trận đều thua - Đội C và D có 6 điểm mỗi điị có 2 thắng 3 thua. Hai đội này không có trận hòa, vì nếu thế thì đã có 3 trận hòa ( điều này trái với xác định tại (*) trên - Đội A và Đội B có số điểm chia cho 3 dư 1 đây chính là trận hòa nêu trên ĐA: a/bảng đấu có 1 trận hòa. b/ Trận hòa duy nhất giữa đội A và B Câu 5: Theo hình vẽ thì chu vi hình lớn = 4 cạnh huyền tam giác + 4 đoạn DB. Vì CB là cạnh huyền do đó: CB = (Chu vi hình lớn - 4.DB): 4
  16. CB = (24 – 4 ): 4 = 5 (cm) Vì 4 tam giác vuông bằng nhau nên CA =AD Chu vi tam giác ABC – (CB + DB) = 2 AD AD = 1/2 (12 – 5 – 1) = 3 (cm) AB = AD + DB = 3 + 1 = 4 (cm) ĐS: AB = 4 cm PHH sưu tầm & viết lời giải 7 - 2014
  17. Chiều cao tam giác ABC là 30 x 2/3 = 20 (cm) Diên tích tam giác ABC là ½( 30 x 20) = 300 (cm2) Diên tích tam giác ACM là 300 x 2/3 = 200 (cm) Độ dài đoạn CM là (200 : 20) x 2 = 20 (cm) Đáp số: a/ 300 cm2 và 20 cm ĐỀ KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM 2012-2013 Môn toán 6-Thời gian:60’ Bài 1.(2,5 đ) Thực hiện phép tính : ( Tính hợp lí nếu có thể) ĐỀ 1 21 1 5 a) 25,97 + 6,54 + 103,46 b)13675 7564 c) : 8 2 16 Bài 2.(2 đ) Tìm x biết : 2 3 a)  x 3 b) 720 :41 (2x 5) 120 3 4 Bài 3. (2 đ) So sánh các phân số sau:
  18. a) 5 và 7 b) 21 và 2011 c) 31 và 2012 8 10 22 2012 95 6035 Bài 4.(1,5 đ) Hai ô tô xuất phát từ A và B cùng 1 lúc và đi ngược chiều nhau, sau 2 giờ chúng gặp nhau. Quãng đường AB dài 210 km. A Tính vận tốc của mỗi ôtô biết vận tốc của ôtô đi từ A lớn hơn vận tốc ôtô đi từ B là 5km/h ? K Bài 5:.(2 đ) Cho tam giác ABC có MC = 1 BC, 4 BK là đường cao của tam giác ABC, H MH đường cao của tam giác AMC có AC là đáy chung. So sánh độ dài BK và MH ? B M C  ĐỀ KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM 2012-2013 Môn toán 6 - Thời gian:60’ Bài 1: Thực hiện phép tính : ( Tính hợp lí nếu có thể) a) 11,3 + 6,9 + 8,7 + 13,1 b) 17,58 . 43 + 57 . 17,58 ĐỀ 2 c) (1 + 3 + 5 + + 2007 + 2009 + 2011)(125125.127 – 127127.125) Bài 2: Thực hiện phép tính 1 1 1 1 1 1 1 1414 1515 1616 1717 1818 1919 a) b) 3 15 35 63 99 143 195 2020 2121 2222 2323 2424 2525 Bài 3: Tìm x biết: 4 7 2 1 1 1 2 2011 a) x b) (7.13 + 8.13): ( 9 - x) = 39 c) 5 10 3 3 6 10 x(x 1) 2013 a a Bài 4: Cho phân số có b - a = 21. Phân số sau khi rút gọn thì được phân số b b 16 . 23 a Tìm phân số ? b Bài 5: So sánh hai số A và B biết 1.2 2.4 3.6 4.8 5.10 111111 A ; B 3.4 6.8 9.12 12.16 15.20 666665 Bài 6: Cho hình vuông ABCD có cạnh 9cm. Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD. a) Tính diện tích hình vuông ABCD. b) Tính diện tích hình AECD ĐÁP ÁN ĐỀ 1 Bài 1.(2,5 đ) Thực hiện phép tính : ( Tính hợp lí nếu có thể) a) 25,97 + 6,54 + 103,46 = 25,97 + ( 6,54 + 103,46) ( 0,25đ ) = 25,97 + 110 = 135, 97. ( 0,5đ ) b)13675 7564 = 75.(136 + 64) ( 0,25đ ) = 75. 200 = 15 000 ( 0,5đ ) 21 1 5 21 1 16 21 16 1 16 c) : =    ( 0,5đ ) 8 2 16 8 2 5 8 5 2 5 42 8 = 10 ( 0,5đ ) 5 5
  19. Bài 2.(2 đ) Tìm x biết : 2 3 2 3 2 9 a)  x 3  x 3  x ( 0,5đ ) 3 4 3 4 3 4 9 2 9 2 27 3 x : x : x 3 ( 0,5đ ) 4 3 4 3 8 8 b) 720 :41 (2x 5) 120 41 (2x 5) 720 :120 41 (2x 5) 6 ( 0,5đ ) 2x 5 41 6 2x 35 5 x 40 : 2 20 ( 0,5đ ) Bài 3. (2 đ) So sánh các phân số sau: 5 55 25 7 74 28 a) và ( 0,25đ ) 8 85 40 10 104 40 28 25 5 7 Vì nên < ( 0,25đ 40 40 8 10 ) 21 2011 1 1 21 2011 b) và Vì nên < ( 0,5đ ) 22 2012 22 2012 22 2012 31 31 1 2012 2012 1 c) Ta có : và ( 0,5đ ) 95 93 3 6035 6036 3 31 31 1 2012 2012 nên ( 0,5đ ) 95 93 3 6036 6035 Bài 4.(2 đ) Tổng vận tốc của hai xe : 210 : 2 = 105 km/h ( 0,5đ ) Vận tốc của ô tô đi từ A : ( 105 + 5 ) : 2 = 55 km/h ( 0,5đ ) Vận tốc của ô tô đi từ A : ( 105 - 5 ) : 2 = 50 km/h ( 0,5đ ) A Bài 5:.(2 đ) Cho tam giác ABC có MC = 1 BC, 4 K BK là đường cao của tam giác ABC, MH đường cao của tam giác AMC có H AC là đáy chung. So sánh độ dài BK và MH ? B M C Vì tam giác ABC và tam giác AMC có cùng chiều cao ứng với đỉnh A 1 Mà MC = BC nên SABC = 4SAMC. ( 1 đ ) 4 Mặt khác : BK và MH là 2 chiều cao ứng với cạnh AC ( 0,5đ ) Nên BK = 4MH. ( 0,5đ ) ĐÁP ÁN ĐỀ 2 Bài 1: Thực hiện phép tính : ( Tính hợp lí nếu có thể) a) 11,3 + 6,9 + 8,7 + 13,1 = ( 11,3 + 8,7 ) + ( 6,9 + 13,1) = 20 + 20 = 40 b) 17,58 . 43 + 57 . 17,58 = 17,58 . ( 43 + 57 ) = 17,58 . 100 = 1758. c) (1 + 3 + 5 + + 2007 + 2009 + 2011)(125125.127 – 127127.125) = (1 + 3 + 5 + + 2007 + 2009 + 2011)(125.1001.127 – 127.1001.125) = (1 + 3 + 5 + + 2007 + 2009 + 2011)(125.127 – 127.125).1001
  20. = (1 + 3 + 5 + + 2007 + 2009 + 2011).0.1001 = 0 Bài 2: Thực hiện phép tính 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a) 3 15 35 63 99 143 195 3 35 57 79 911 1113 1315 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 3 5 2 5 7 2 7 9 2 9 11 2 11 13 2 13 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 7 =  3 2 3 5 5 7 7 9 9 11 11 13 13 15 3 2 3 15 3 2 15 15 1414 1515 1616 1717 1818 1919 b) 2020 2121 2222 2323 2424 2525 14101 15101 16101 17101 18101 19101 14 15 16 17 18 19 101 20101 21101 22101 23101 24101 25101 20 21 22 23 24 25 101 14 15 16 17 18 19 333 33 11 20 21 22 23 24 25 453 45 15 Bài 3: Tìm x biết: 4 7 4 7 1 a) x x 5 10 5 10 10 2 2 2 b) (7.13 + 8.13): ( 9 - x) = 39 9 x 7.13 8.13 : 39 9 x 195: 39 3 3 3 2 2 2 9 x 5 x 9 5 4 3 3 3 1 1 1 2 2011 1 12 12 2 2011 c) 3 6 10 x(x 1) 2013 3 62 102 x(x 1) 2013 1 2 2 2 2011 1 2 2 2 2011 3 12 20 x(x 1) 2013 3 34 45 x(x 1) 2013 1 1 1 1 1 1 1 1 1 2011 1 1 1 2011 2  2 3 3 4 4 5 5 6 x x 1 2013 3 3 x 1 2013 2 2011 2 2011 2 2 1 1 x 1 2013 x 1 2013 x 1 2013 Vậy x + 1 = 2013 x 2012 a a Bài 4: Cho phân số có b - a = 21. Phân số sau khi rút gọn thì được phân số b b 16 . 23 a Tìm phân số ? Sơ đồ đoạn thẳng b 21 Tử số Mẫu số Vì b - a = 21 và mẫu nhiều hơn tử 7 phần Giá trị 1 phần : 21 : 7 = 3 Vậy tử số : 16. 3 = 48; mẫu số : 23. 3 = 69, phân số cần tìm : 48 69 Bài 5: So sánh hai số A và B biết
  21. 1.2 2.4 3.6 4.8 5.10 12 2 12 3 12 4 12 5 12 Ta có : A 3.4 6.8 9.12 12.16 15.20 34 2 34 3 34 4 34 5 34 12 1 2 3 4 5 2 1 34 1 2 3 4 5 12 6 111111 111111 1 B 666665 666666 6 Vậy B > A. Bài 6: Cho hình vuông ABCD có cạnh 9cm. Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD. a) Tính diện tích hình vuông ABCD. b) Tính diện tích hình AECD a) Diện tích hình vuông : B 2 2 A SABCD = AB = 9 = 81. b) SAECD = SAED + SCDE mà ABD và ADE có cùng chiều cao đỉnh A. E AE = 2 BD 3 2 Nên SAED S 3 ABD 2 P Tương tự : SCED S 3 BCD 2 2 Nên SAECD = SAED + SCDE S S 3 ABD 3 BCD D C 2 2 2 2 SABD SBCD SABCD 81 54 cm 3 3 3 ĐỀ THI KHẢO SÁT MÔN TOÁN- LỚP 6 NĂM HỌC 2012 - 2013 Môn toán 6-Thời gian:90’ Bài 1: Tính giá trị biểu thức a) (25 915 + 3550 : 25 ) : 71 b) 3499 + 1104 : 23 - 75 Bài 2: Tìm x biết : a) 0,8 x = 3,2 b) 6,2x = 43,18 + 18,82 Bài 3 : Một hình chữ nhật có chu vi là 48 m, chiều dài gấp đôi chiều rộng. Tìm chiều dài, chiều rộng và diện tích hình chữ nhật đó. 2 Bài 4:Một lớp có 41 học sinh. Số học sinh giỏi bằng số học sinh khá; số học 3 3 sinh khá bằng số học sinh trung bình, còn lại là học sinh yếu. Hãy tính số học 4 sinh từng loại biết rằng số học sinh yếu là 4 hoặc 5 em. Bài 5: Một đoàn xe tải chở hàng, 3 xe đầu chở mỗi xe chở 4520kg hàng, 5 xe sau mỗi xe chở 4120kg hàng. Hỏi trung bình mỗi xe chở được bao nhiêu kg hàng?
  22. Bài 6: Một bể nuôi cá bằng kính dạng hình hộp chữ nhật có chiều dài 8dm, chiều rộng 6dm, chiều cao 4dm. Tính: a) Diện tích kính cần dùng để làm bể (bể không có nắp). b) Thể tích bể cá (độ dày đáy không đáng kể) 3 c) Mức nước trong bể bằng chiều cao của bể. Hỏi trong bể chứa bao nhiêu 4 lít nước?  Trường THCS Quỳnh Châu Năm học 2014 - 2015 ĐỀ THI CHỌN VÀO LỚP 6 A,B TRƯỜNG THCS QUỲNH CHÂU NĂM HỌC 2014 - 2015 MÔN: TOÁN- (Thời gian làm bài: 90 phút) Câu 1(3điểm) 1.(2đ) Tính bằng cách hợp lý nhất: a) 17,58 43 + 57 17,58 b) 43,57 2,6 ( 630 – 315 2 ) c) 45 16 17 45 15 28 d) 104 68 – 36 52 2.(1đ) So sánh các phân số: a)23 và 22 ; b)12 và 25 27 29 25 49 Câu 2 (1 điểm) Tìm x a) ( x 0,25 + 1999 ) 2000 = ( 53 + 1999 ) 2000 x 140 b) 71 + 65 4 = + 260 x Câu 3(2điểm) Trung bình cộng tuổi hai mẹ con hiện nay là 24 tuổi. Hãy tính tuổi mỗi người hiện nay biết rằng 3 năm nữa tuổi con bằng 5 tuổi mẹ 13 Câu 4 ( 3 điểm ): Cho hình chữ nhật ABCD có chu vi là 60cm và chiều dài AB gấp rưỡi chiều rộng BC. Lấy một điểm M trên cạnh BC sao cho MB = 2MC. Nối AM kéo dài cắt DC kéo dài tại điểm E. Nối B với E. Nối D với M.
  23. a)Tính diện tích hình chữ nhật ABCD. b)So sánh diện tích tam giác MBE và diện tích tam giác MCD. c)Gọi O là giao điểm của AM và BD. Tính tỷ số OB OD Câu 5 (1điểm) Tìm số có 2 chữ số, biết rằng số đó gấp 8 lần tổng các chữ số của nó HƯỚNG DẪN CHẤM - MÔN TOÁN câu Nội dung Điểm Câu 1 1) (3 điểm) a) 17,58 43 + 57 17,58 (0,5đ) 1)(2đ) = 17,58 43 + 17,58 57 = 17,58 ( 43 + 57 ) = 17,58 100 = 1758 b) 43,57 2,6 ( 630 – 315 2 ) (0,5đ) = 43,57 2,6 ( 630 – 630 ) = 43,57 2,6 0 = 0 c) 45 16 17 (0,5đ) 45 15 28 = 45 15 45 17 45 15 28 = 45 15 28 = 1 45 15 28 d) 104 68 – 36 52 = 52 2 68 – 36 52 = 52 (136 – 36 ) (0,5đ) = 52 100 = 5200 2)(1đ) 2) a) 23 >23 , 23 > 22 27 29 29 29 23 22 (0,5đ) 27 29 12 12 1 25 25 1 b)Ta có: và 25 24 2 49 50 2 12 25 Suy ra (0,5đ) 25 49 Câu 2 a) ( x 0,25 + 1999 ) 2000 = ( 53 + 1999 ) 2000 (1điểm ) x 0,25 + 1999 = 53 + 1999 (0.25đ) x 0,25 = 53 x = 53 : 0,25 (0.25đ) x = 212
  24. x 140 b) 71 + 65 4 = + 260 x 71 + 260 = ( x + 140 ) : x + 260 (0.25đ) 71 = ( x + 140 ) : x 71 x = x + 140 70 x + x = x + 140 70 x = 140 (0.25đ) x = 2 Câu 3 Tổng số tuổi hai mẹ con hiện nay là: (0.25đ) (2đ) 24 2 = 48 (tuổi). Vì mỗi năm mỗi người thêm 1 tuổi nên 3 năm nữa tổng số (0.25đ) tuổi của hai mẹ con là: 48 + 3 2 = 54 (tuổi). (0.25đ) Tuổi mẹ 3 năm nữa là: 54: (5 + 13) 13 = 39 (tuổi). (0.5đ) Tuổi mẹ hiện nay là: (0.25đ) 39 – 3 = 36 (tuổi). (0.25đ) Tuổi con hiện nay là: (0.25đ) 48 – 36 = 12 (tuổi) Câu 4 a) (3 điểm ) Tổng của chiều dài và chiều rộng hình chữ nhật là 60: 2 = 30 (0,25đ) (cm). (0,25đ) Chiều dài gấp rưỡi chiều rộng tức là chiều dài bằng 3 chiều 2 (0,25đ) rộng. Vậy chiều dài hình chữ nhật là: 30: (3 + 2) 3 = 18 (cm). (0.25đ) Chiều rộng hình chữ nhật là: 30 - 18 = 12 (cm). Diện tích hình chữ nhật là: 18 12 = 216 (cm2 ) A B O M D C E b) (0,25đ) * Vẽ hình: * SEAB= SBCD vì:+ đáy AB = đáy CD (0,25đ) + Chiều cao kẻ từ E xuống AB bằng chiều cao BC. (0,25đ) *SABM = SDBM vì: + Chung đáy BM + Chiều cao AB bằng chiều cao DC (0,25đ) *Suy ra SEAB - SABM = SBCD - SDBM hay SMBE = SMCD
  25. c) 0,25đ) * SABM = 2 SMAD vì: + Đáy BM = 2 AD (AD= BC) 3 3 (0,25đ) + Chiều cao AB=chiều cao hạ từ M xuống AD. Mà 2 tam giác này lại chung đáy AM. Suy ra chiều cao hạ từ 0,25đ) B xuống AM=2 chiều cao hạ từ D xuống AM. 3 * Mặt khác, đây cũng chính là các chiều cao hạ xuống đáy (0,25đ) S 2 MO của hai tam giác BMO và DMO MBO S MDO 3 *Các tam giác MBO và MDO lại chung chiều cao kẻ từ M OB 2 xuống BD nên OD 3 Câu 5 *Gọi số phải tìm là: ab ( a 0 ; a,b < 10) (0.25đ) (1đ) Theo bài ra ta có: ab = ( a + b ) 8 a 10 + b = ( a + b ) 8 ( cấu tạo số ab ) a 10 + b = a 8 + b 8 (0.25đ) a 2 = b 7 vì a 2 là một số chẵn chia hết cho 7, mà a 2 < 20 nên a 2 = 14 Do đó a = 14 : 2 = 7 (0.25đ) b 7 = 14 b = 14 : 7 = 2 Ta được số ab = 72 (0.25đ) Thử lại: 72 : (7 + 2) = 8 ( đúng ) Vậy số cần tìm là 72 Trường THCS Lê Bình – Hương sơn – Hà Tĩnh ĐỀ KHẢO SÁT ĐẦU VÀO LỚP 6 Năm học 2014-2015 MÔN: TOÁN (Thời gian làm bài: 60 phút không kể thời gian giao đề) Câu I (3,0 điểm): Thực hiện phép tính a) 28,5 1,5 b) 15,3 + 20 + 64,7 c) 4,25 57,43 325 42,57 4,25 ; 12 59 d) 8% 9% 50 100 Câu II (1,5 điểm): Tìm x biết: a) x + 9,44 = 18,36 b) 2012 : x + 23 = 526 1 5 1 7 c) x ; 2 2 2 4 Câu III (2,5 điểm):
  26. Lúc 6 giờ hai ô tô khởi hành từ hai điểm A và B để đi cùng chiều về địa điểm C. Vận tốc của ô tô đi từ A là 60km/h, vận tốc của ôtô đi từ B là 45km/h. Hai xe đến C cùng 1 lúc. Biết quãng đường AC dài 114 km. a) Hai xe đến C lúc mấy giờ? b) Tính quãng đường AB? Câu IV (2 điểm): Cho hình vuông ABCD có cạnh dài 10cm. E là điểm chính giữa cạnh AB, H là điểm chính giữa cạnh BC. a) Tính diện tích hình thang BHDA. b) Tính diện tích tam giác AHE và diện tích tam giác AHD. Câu V (1,0 điểm): Tính tổng 1 5 11 19 29 41 55 71 89 A 2 6 12 20 30 42 56 72 90 Hết Họ và tên thí sinh : ; Số báo danh : Chữ kí giám thị 1 : ; Chữ kí giám thị 2 : HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM, LỚP 6 Môn thi: TOÁN Câu Ý Nội dung Điểm I a 28,5 1,5 = 42,75 0,75 b 15,3 + 20 + 64,7 = 100 0,75 c 4,25 57,43 325 42,57 4,25 0,75 4,25 (57,43 42,57) 325 4,25 100 325 100 12 59 24 8 59 9 100 d 8% 9% 1 0,75 50 100 100 100 100 100 100 II a x + 9,44 = 18,36 x = 18,36 - 9,44 0,25 x = 8,92 0,25 b 2012 : x + 23 = 526 2012 : x = 526-23 2012 : x = 503 0,25 x = 2012: 503 0,25 x = 4
  27. c 1 5 1 7 x 2 2 2 4 1 7 1 5 1 x : 2 4 2 2 2 0,25 T×m ®-îc x 1 0,25 a) Thời gian ôtô đi từ A đến hết quãng đường AC là: 114 : 60 = 1,9 0,5 III (giờ). 0,25 Đổi 1,9 giờ = 1 giờ 54 phút. 0,5 Hai xe đến C lúc: 6 giờ + 1 giờ 54 phút = 7 giờ 54 phút. 0,5 b) Quãng đường BC dài: 45 x 1,9 = 85,5 km. 0,75 Quãng đường AB dài: 114 – 85,5 = 28,5 km. IV A E B H D C a) Diện tích hình thang BHDA là: 75 cm2 1,0 b) Diện tích tam giác AHE là: 12,5cm2 0,5 Diện tích tam giác AHD là: 50cm2 0,5 1 5 11 19 29 41 55 71 89 V A 2 6 12 20 30 42 56 72 90 1 1 1 1 1 1 1 1 1 1 2 6 12 20 90 0,25 1 1 1 1 1 (1 1 1 1 1 1 1 1 1) 2 6 12 20 90 0,25 1 1 1 1 1 1 1 1 1 1.9 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10 1 1 1 1 1 9 1 0,25 2 2 3 9 10 1 9 1 10 9 81 1 9 8 0,25 10 10 10 *Chú ý: Học sinh làm theo cách khác đúng vẫn cho điểm tối đa. PHÒNG GD- ĐT TAM DƯƠNG ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP 6 TRƯỜNG THCS KIM LONG NĂM HỌC 2014- 2015 (Thời gian làm bài: 90 phút) Học sinh không được sử dụng máy tính khi làm bài.
  28. Câu 1 (2,0 điểm). a) Tính giá trị biểu thức: (32,5+28,3×2,7-108,91)×2014 1 5 11 19 29 41 55 71 89 b) Tính nhanh: 2 6 12 20 30 42 56 72 90 Câu 2 (2,0 điểm). Tìm x , biết: 22 2 7 a) : (11 x) 7 3 5 b) (x 1) (x 2) (x 3) (x 100) 5550 Câu 3 (2,5 điểm). Lúc 6 giờ sáng, một người đi xe đạp từ A đến B với vận tốc 12km/h. Sau 2 giờ, một người khác đi xe máy từ B đến A với vận tốc 35km/h. Biết quãng đường từ A đến B dài 118km. Hỏi đến mấy giờ hai người đó gặp nhau? Câu 4 (2,0 điểm). Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho đoạn AE bằng 2 ×AB. Trên cạnh AC lấy điểm D sao cho AD bằng 1 ×AC. Nối B với D, nối E 3 3 với D. Tính diện tích tam giác ABC, biết diện tích tam giác AED bằng 4cm2 . Câu 5 (1,5 điểm). Hình vẽ sau có bao nhiêu đoạn thẳng? Tính tổng độ dài các đoạn thẳng đó? (Biết rằng đoạn thẳng lớn nhất được chia thành 6 đoạn thẳng mỗi đoạn thẳng đó có độ dài 1 cm) Cán bộ coi thi không giải thích gì thêm! HƯỚNG DẪN CHẤM Câu Nội dung Điểm 1 a) (32,5+28,3×2,7-108,91)×2014 = (32,5+76,41-108,41)×2014 0,25 = (108,91 - 108,91)×2014 0,25 = 0×2014 0,25 = 0 0,25 b) 1 5 11 19 29 41 55 71 89 2 6 12 20 30 42 56 72 90
  29. 1 1 1 1 0,25 = 1 1 1 1 2 6 12 90 1 1 1 1 0,25 = (1 1 1 1) ( )  2 6 12 90 9sohang  9sohang 1 1 1 1 1 1 1 0,25 = 9 (1 ) 223 34910 9sohang 1 = 9 (1 ) 0,125 10 81 = 0,125 10 22 2 7 2 a) : (11 x) 7 3 5 22 7 2 : (11 x) 0,125 7 5 3 22 11 : (11 x) 0,25 7 15 22 11 11 x : 0,125 7 15 30 11 x 7 0,25 30 x 11 7 0,125 47 x 7 0,125 b) (x 1) (x 2) (x 3) (x 100) 5550 (x x x x) (1 2 3 100) 5550 0,25   100sohang 100sohang (1 100)100 0,25 100 x 5550 2 100 x 5050 5550 0,125 100 x 5550 5050 0,125 100 x 500 0,125 x 5 0,125 3 Sau 2 giờ người đi xe đạp đi được đoạn đường là: 12×2=24 (km) 0,5 Lúc đó hai người còn cách nhau là: 118-24=94 (km) 0,5 Sau đó mỗi giờ hai người gần nhau thêm là: 12+35=47 (km) 0,5 Thời gian từ khi người thứ hai đi đến lúc gặp nhau là: 94:47=2 (giờ) 0,5 Vậy thời điểm hai người gặp nhau là: 6+2+2=10 (giờ) 0,5 Đáp số: hai người gặp nhau lúc 10 giờ 4 Vẽ hình đúng 0,5
  30. D E C B 0,25 + Vì tam giác AED và tam giác AEC chung đỉnh E mà cạnh đáy 1 AD AC nên: 3 1 Diện tích tam giác AED = diện tích tam giác AEC 0,25 3 + Vì tam giác AEC và tam giác ABC chung đỉnh C mà cạnh đáy 2 AE AB nên: 3 0,5 2 Diện tích tam giác AEC = diện tích tam giác ABC 3 1 2 Vậy: Diện tích tam giác AED = diện tích tam giác ABC 0,25 3 3 2 = diện tích tam giác ABC 0,25 9 9 Hay: Diện tích tam giác ABC = diện tích tam giác AED 2 9 = 4 18 (cm2 ) 2 5 Có 6 đoạn thẳng dài 1cm. 0,15 Có 5 đoạn thẳng dài 2cm. 0,15 Có 4 đoạn thẳng dài 3cm. 0,15 Có 3 đoạn thẳng dài 4cm. 0,15 Có 2 đoạn thẳng dài 5cm. 0,15 Có 1 đoạn thẳng dài 6cm. 0,15 Vậy tổng độ dài các đoạn thẳng đó là: 6 1 5 2 4 3 3 4 2 5 1 6 56 (cm) 0,6 Điểm toàn bài là tổng điểm của tất cả các phần sau khi đã làm tròn đến phần thập phân thứ nhất. * Lưu ý: Nếu thí sinh làm theo cách khác mà đúng thì vẫn cho điểm tối đa. HẾT Phòng GD Ân Thi Trường THCS Hồ Tùng Mậu ®Ò thi kh¶o s¸t ®Çu vµo líp 6 (Thêi gian 60 phót) Bµi 1: (3®) TÝnh :
  31. 1 2 3 a)19,72 : 58 b) x x c) 69 - 7,85 2 3 4 d) 3giê 20phót x 4 e)15ngµy 14giê - 12giê 6ngµy f) Tæng c¸c ph©n sè nhá h¬n 1 cã mÉu lµ 99 vµ tö chia hÕt cho 7 Bµi 2 : (2®) a, T×m y : 6,2 x y = 43,18 + 18,82 b, T×m 3 ph©n sè kh¸c nhau sao cho mçi ph©n sè lín h¬n 5 vµ bÐ h¬n 7 . 7 7 Bµi 3: (2 ®) Cho mét sè cã 6 ch÷ sè. BiÕt c¸c ch÷ sè hµng tr¨m ngh×n, hµng ngh×n, hµng tr¨m vµ hµng chôc lÇn l-ît lµ 5, 3, 8, 9. H·y t×m c¸c ch÷ sè cßn l¹i cña sè ®ã ®Ó sè ®ã chia cho 2, cho 3 vµ cho 5 ®Òu d- 1. ViÕt c¸c sè t×m ®-îc. Bµi 4: (2 ®) A B H×nh ch÷ nhËt ABCD ®-îc t¹o thµnh tõ 5 h×nh ch÷ nhËt b»ng nhau (nh- h×nh vÏ). TÝnh chu vi cña h×nh ch÷ nhËt ABCD, biÕt r»ng diÖn tÝch nã lµ 4320cm2. D C Bµi 5: (1®) C¾t mét h×nh vu«ng thµnh 3 h×nh tam gi¸c tho¶ m·n tæng diÖn tÝch cña hai tam gi¸c nhá b»ng diÖn tÝch tam gi¸c cßn l¹i vµ 3 h×nh ghÐp l¹i thµnh mét tam gi¸c. HÕt Chó ý häc sinh kh«ng ®-îc dïng m¸y tÝnh. HD chÊm ®Ò thi kh¶o s¸t ®Çu vµo líp 6 Bµi 1: (3®) Mçi ý ®óng cho 0,5® 1 2 3 a)19,72 : 58 = 0,34 b) x x = 0,25 c) 69 - 7,85 = 61,15 2 3 4 d) 3giê20phót x 4 = 13 giê 20 phót e)15ngµy14giê - 12giê 6ngµy = 9 ngµy 2 giê
  32. f) - C¸c ph©n sè nhá h¬n 1 cã mÉu lµ 99 vµ tö chia hÕt cho 7 lµ: 0/99; 7/99; 14/99; 21/99; ; 98/99 Tæng c¸c ph©n sè nhá h¬n 1 cã mÉu lµ 99 vµ tö chia hÕt cho 7 lµ: 7/99 + 14/99 + 21/99 + + 98/99 cã 14 ph©n sè = (7+14+21+ +98)/99 = 7x(7+98)/99 =735/99 = 245/33 Bµi 3: (2®) Theo ®Çu bµi sè ®· cho cßn thiÕu hµng chôc ngh×n vµ hµng ®¬n vÞ - gäi ch÷ sè hµng chôc ngh×n lµ b, ch÷ sè hµng ®¬n vÞ lµ e, ta cã sè sau: 5b389e (0,25®) V× sè chia hÕt cho 2 vµ cho 5 ch÷ sè tËn cïng b»ng 0 nªn e = 1 => 5b3891 (0,5®) V× tæng c¸c ch÷ sè cña 1 sè chia hÕt cho 3 th× sè ®ã chia hÕt cho 3 - v× sè ®ã chia cho 3 ph¶i d- 1 nªn: ( 5+b+3+8+9+1) = 24 + (b+2) chia hÕt cho 3 d-1 (0,5®)  b = 2, hoÆc 5, hoÆc 8. (0,5®) VËy c¸c sè t×m ®-îc lµ: 523891; 553891; 583891. (0,25®) Bµi 4: (2 ®). Theo h×nh vÏ ta thÊy h×nh ch÷ nhËt lín cã 3 lÇn chiÒu réng h×nh ch÷ nhËt nhá b»ng 2 lÇn chiÒu dµi h×nh ch÷ nhËt nhá. VËy, h×nh ch÷ nhËt nhá cã chiÒu dµi gÊp r-ëi chiÒu réng. (0,25®) V× 5 h×nh ch÷ nhËt nhá b»ng nhau nªn diÖn tÝch 1 h×nh ch÷ nhËt nhá lµ: 4320 : 5 = 864 (cm2) (0,25®) Coi chiÒu dµi HCN nhá lµ a, chiÒu réng lµ b; ta cã a = 1,5 x b Nªn ta cã DiÖn tÝch h×nh ch÷ nhËt: a x b = 864 cm2. (0,25®) Hay : 1,5 x b x b = 864 cm2 Suy ra: b x b = 864 : 1,5 (0,25®) b x b = 576 = 24 x 24 Suy ra chiÒu réng h×nh ch÷ nhËt nhá lµ: b= 24cm. (0,25®) ChiÒu dµi h×nh ch÷ nhËt nhá lµ: 24 x 1,5 = 36 (cm). (0,25®) Chu vi h×nh ch÷ nhËt ABCD lµ: (24 x 3 + 36 + 24) x 2 = 264 (cm). (0,25®) §¸p sè: 264 cm. (0,25®) Bµi 5: (1 ®) C¾t h×nh vu«ng theo ®-êng chÐo thµnh hai tam gi¸c vu«ng c©n, c¾t 1 h×nh tam gi¸c theo ®-êng cao thµnh 2 tam gi¸c vu«ng c©n nh- h×nh vÏ (0,5®) (0,5®)
  33. TRƯỜNG THCS QUỲNH GIANG ĐỀ THI TUYỂN VÀO LỚP CHỌN NĂM HỌC 2014- 2015 Đề chính thức Môn: Toán- Lớp 6 Thời gian làm bài: 90 phút Bài 1: (2,0 điểm) Đặt tính rồi tính. a) 7354,36 + 259,09 b) 567,39 – 15,38 c) 125,7 x 23 d) 978,75: 25 Bài 2: ( 2,5 điểm): Thực hiện phép tính bằng cách thuận tiện nhất (nếu có thể) a) 50% + 7 – 1 12 2 b) 2014 x 65 + 2014 x 45 - 2014 x 10 c) 125 - 25 : 3 x 12 1 d) (2013 2014 + 2014 2015+ 2015 x 2016) (1 + - 1 ) 3 e) 17,75 + 16,25 + 14,75 + 13,25 + .+ 4,25 + 2,75 + 1,25 Bài 3: ( 1,5 điểm) Một ô tô đi từ địa điểm A lúc 5 giờ 5 phút và đến địa điểm B lúc 10 giờ 5 phút. Dọc đường ô tô nghỉ mất 30 phút . Tính độ dài quãng đường AB? Biết rằng Ô tô đi với vận tốc 40 km/giờ. Bài 4: ( 3,0 điểm) Cho hình chữ nhật ABCD. Trên cạnh DC lấy điểm M sao cho DM = DC. Biết AD = 15cm; AB = 24cm. Tính: a) Tính chu vi hình chữ nhật ABCD. b) Diện tích hình tam giác AMC. c) Tính tỉ số phần trăm diện tích của hình tam giác ADM và hình thang ABCM. Bài 5: (1,0 điểm)
  34. 1 1 1 1 1 1 1 Tính nhanh: A= + 4 8 16 32 64 128 256 hết TRƯỜNG THCS QUỲNH GIANG HDC THI TUYỂN VÀO LỚP CHỌN NĂM HỌC 2014- 2015 Đề chính thức Môn: Toán- Lớp 6 Thời gian làm bài: 90 phút Câu Đáp án Điểm a.7613,45 0,5 b.552,01 0,5 1(2đ) c.2891,1 0,5 d.39,15 0,5 a) 7 0,5 12 b) 201400 0,5 2(2,5đ) c) 25 0,5 d) 0 0,5 e) [(17,75 - 1,25) : 1,5 + 1] x ( 17,75 + 1,25) :2 = 114 0,5 Thời gian ô tô đi là: 10 giờ 5 phút - 5 giờ 5 phút - 30 phút = 4 giờ 30 phút = 4,5 giờ 0,75 3(1,5đ) Độ dài quãng đường AB là: 4,5 x 40 = 180 km 0,75 - Vẽ hình đúng 0,5 a) (15+24)x 2 = 78cm 1 4(3đ) b) 15 x 16 : 2 = 120 cm2 1 c) 60: 300 x100% = 20% 0,5 5(1đ) A = 1 TRƯỜNG THCS QUỲNH GIANG ĐỀ THI TUYỂN VÀO LỚP CHỌN NĂM HỌC 2014- 2015 Đề chính thức Môn: Toán- Lớp 6 Thời gian làm bài: 90 phút Bài 1: (2,0 điểm)
  35. Đặt tính rồi tính. a) 7354,36 + 259,09 b) 567,39 – 15,38 c) 125,7 x 23 d) 978,75: 25 Bài 2: ( 2,5 điểm): Thực hiện phép tính bằng cách thuận tiện nhất (nếu có thể) a) 50% + 7 – 1 12 2 b) 2014 x 65 + 2014 x 45 - 2014 x 10 c) 125 - 25 : 3 x 12 1 d) (2013 2014 + 2014 2015+ 2015 x 2016) (1 + - 1 ) 3 e) 17,75 + 16,25 + 14,75 + 13,25 + .+ 4,25 + 2,75 + 1,25 Bài 3: ( 1,5 điểm) Một ô tô đi từ địa điểm A lúc 5 giờ 5 phút và đến địa điểm B lúc 10 giờ 5 phút. Dọc đường ô tô nghỉ mất 30 phút . Tính độ dài quãng đường AB? Biết rằng Ô tô đi với vận tốc 40 km/giờ. Bài 4: ( 3,0 điểm) Cho hình chữ nhật ABCD. Trên cạnh DC lấy điểm M sao cho DM = DC. Biết AD = 15cm; AB = 24cm. Tính: d) Tính chu vi hình chữ nhật ABCD. e) Diện tích hình tam giác AMC. f) Tính tỉ số phần trăm diện tích của hình tam giác ADM và hình thang ABCM. Bài 5: (1,0 điểm) 1 1 1 1 1 1 1 Tính nhanh: A= + 4 8 16 32 64 128 256 hết TRƯỜNG THCS QUỲNH GIANG HDC THI TUYỂN VÀO LỚP CHỌN NĂM HỌC 2014- 2015 Đề chính thức Môn: Toán- Lớp 6 Thời gian làm bài: 90 phút
  36. Câu Đáp án Điểm a.7613,45 0,5 b.552,01 0,5 1(2đ) c.2891,1 0,5 d.39,15 0,5 a) 7 0,5 12 b) 201400 0,5 2(2,5đ) c) 25 0,5 d) 0 0,5 e) [(17,75 - 1,25) : 1,5 + 1] x ( 17,75 + 1,25) :2 = 114 0,5 Thời gian ô tô đi là: 10 giờ 5 phút - 5 giờ 5 phút - 30 phút = 4 giờ 30 phút = 4,5 giờ 0,75 3(1,5đ) Độ dài quãng đường AB là: 4,5 x 40 = 180 km 0,75 - Vẽ hình đúng 0,5 a) (15+24)x 2 = 78cm 1 4(3đ) b) 15 x 16 : 2 = 120 cm2 1 c) 60: 300 x100% = 20% 0,5 5(1đ) A = 1 TRƯỜNG THCS YÊN MỸ ĐỀ KIỂM TRA ĐẦU VÀO LỚP 6 NĂM HỌC 2014- 2015 Môn: Toán Thời gian làm bài: 45 phút. Câu 1 (2 điểm) Dùng ba trong bốn chữ số 7, 6, 2, 1 viết tất cả các số có ba chữ số sao cho: a) Số đó chia hết cho 9. b) Số đó chia hết cho cả 2, 3 và 9. Câu 2 (2 điểm) Thực hiện phép tính: a) 189 + 424 + 511 + 276 + 55 1 5 1 3 7 b) . . 8 8 8 8 8 Câu 3 (2 điểm) Tìm x: a) 100 – 7 . (x – 5 ) = 58 1 7 13 b) x . 3 26 6 Câu 4(2.5 điểm) Một ô tô và một xe máy khởi hành cùng một lúc và đi ngược chiều nhau. Ô tô đi từ A với vận tốc 48,5 km/giờ, xe máy đi từ B với vận tốc 33,5
  37. km/giờ. Sau 1 giờ 30 phút ô tô và xe máy gặp nhau tại C. Hỏi quãng đường AB dài bao nhiêu ki- lô – mét? Câu 5(1 điểm) Cho tam giác vuông có hai cạnh góc vuông là 12cm và 8cm. Tính diện tích tam giác vuông đó. Câu 6(0,5 điểm) Tính tồng: 1 1 1 1 1 S 2.5 5.8 8.11 11.14 97.100 HƯỚNG DẪN CHẤM Câu 1 (2 điểm) a)(1đ ) 621, 612, 216, 261, 162, 126 b) (1 đ) 612, 216, 162, 126 Câu 2 (2 điểm) a) (1đ) 1455 b) (1đ) 1 Câu 3 (2 điểm) a) x = 8 1 b) x 4 Câu 4(2.5 điểm) - Tính được quãng đường AC dài 72,75 km (1đ) - Tính được quãng đường BC dài 50,25 km (1đ) - Tính được quãng đường AB dài 123 km (0,5 đ) Câu 5(1 điểm) - Tính được diện tích tam giác vuông : 36 cm2 Câu 6(0,5 điểm) S = 49 300 PHÒNG GD&ĐT TP BẮC NINH CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM TRƯỜNG THCS ĐÁP CẦU Đ ộc l ập - T ự do- H ạnh ph úc ĐỀ KHẢO SÁT LỚP 5 VÀO LỚP 6
  38. Năm học 2014-2015 MÔN: TOÁN (Thời gian làm bài: 60 phút không kể thời gian giao đề) Câu I (3,0 điểm): Thực hiện phép tính bằng cách hợp lý nhất a) 64 × 23 + 37 × 23 – 23 b) 33,76 + 19,52 + 6,24 38 13 6 c) 11 16 11 Câu II (1,5 điểm): Tìm x biết: a) 2012 : x + 23 = 526 b) x + 9,44 = 18,36 3 1 c) x - = 6 x 4 24 Câu III (2,0 điểm): Một xe lửa đi từ A lúc 6 giờ 45 phút để đến B với vận tốc 40,5 km/giờ. Dọc đường xe lửa nghỉ tại các ga hết 36 phút. Hỏi xe lửa đến B vào lúc nào, biết rằng quãng đường AB dài 97 km 200m? Câu IV (2,5 điểm): Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho AM gấp rưỡi MB, trên cạnh AC lấy điểm N sao cho AN bằng một nửa AC. Biết diện tích tam giác AMN là 36 cm2. Tính diện tích tứ giác BMNC Câu V (1,0 điểm): Tính nhanh: 1 5 11 19 29 41 55 71 89 A 2 6 12 20 30 42 56 72 90 Hết Họ và tên thí sinh : ; Số báo danh : Chữ kí giám thị 1 : ; Chữ kí giám thị 2 :
  39. HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM, LỚP 6 Môn thi: TOÁN Câu Ý Nội dung Điểm I a 64 × 23 + 37 × 23 – 23 = 23.(64+37-1)=23.100=2300 1,0 b 33,76 + 19,52 + 6,24 = (33,76+6,24)+19,52 = 40 + 19,52= 59,52 1,0 c 38 13 6 38 6 13 13 13 1,0 4 4 11 16 11 11 11 16 16 16 II a 2012 : x + 23 = 526 2012 : x = 526-23 2012 : x = 503 0,25 x = 2012: 503 x = 4 0,25 b x + 9,44 = 18,36 x = 18,36 - 9,44 0,25 x = 8,92 0,25 c 3 1 x - 6 × 4 2 4 3 1 x 4 4 0,25 1 3 x 4 4 x 1 0,25 Đổi 97km 200m = 97,2 km III Thời gian xe lửa đi từ A đến B là: 0,25 0,25 97,2 : 40,5 = 2,4 giờ = 2 giờ 24 phút 0,25 Thời gian xe lửa đi từ A đến B kể cả lúc nghỉ tại các ga là: 0,25 0,25 2 giờ 24 phút + 36 phút = 3 giờ 0,25 Vậy xe lửa đến ga B vào lúc: 0,25 6 giờ 45 phút + 3 giờ = 9 giờ 45 phút 0,25 Đáp số: 9 giờ 45 phút IV - Vẽ hình đúng 0,5 A N M B C
  40. 3 3 Vì AM gấp rưỡi MB tức là AM = MB nên AM = AB 0,25 2 5 1 Có AN bằng một nửa AC tức là AN= AC 0,25 2 Nối B với N Xét hai tam giác ANM và ANB có: 3 3 AM = AB, có chung đường cao hạ từ N xuống AB nên SANM= SANB 0,25 5 5 2 Do đó diện tích tam giác ANB là : 36: 3x 5 = 60 (cm ) 0,25 Xét hai tam giác ANB và ABC có : chung chiều cao hạ từ đỉnh B xuống 1 đáy AC và có đáy AN = AC, do đó diện tích tam giác ABC là: 2 60 x 2 = 120 (cm2) 0,5 Vậy diện tích tứ giác BMNC là: 120 - 36 = 84 (cm2) 0,25 Đáp số: 84 cm2 0,25 1 5 11 19 29 41 55 71 89 V A 2 6 12 20 30 42 56 72 90 1 1 1 1 1 1 1 1 1 1 2 6 12 20 90 0,25 1 1 1 1 1 (1 1 1 1 1 1 1 1 1) 2 6 12 20 90 0,25 1 1 1 1 1 1 1 1 1 1.9 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10 1 1 1 1 1 9 1 0,25 2 2 3 9 10 1 9 1 10 9 81 1 9 8 0,25 10 10 10 *Chú ý: Học sinh làm theo cách khác đúng vẫn cho điểm tối đa. phßng Gi¸o dôc vµ §µo t¹o NAM ĐÀN ®Ò tuyÓn sinh vµo Líp 6 tr­êng THCS TÂN DÂN N¨m häc 2014 - 2015 M«n: To¸n – (Thêi gian lµm bµi 90 phót) Bµi 1 ( 4,0 ®iÓm). TÝnh gi¸ trÞ biÓu thøc: 12 59 a) 4,25 57,43 325 42,57 4,25 ; c) 8% 9% ; 50 100 1 1 1 1 b) 4,14 : 3,17 5,37 : 3,17 3 ; d) . 3 6 10 45 8 sè h¹ng Bµi 2 (2,0 ®iÓm). T×m c¸c ch÷ sè a,b tháa m·n:
  41. a) 5a1b chia cho 2 d- 1, chia hÕt cho 5 vµ chia hÕt cho 3; b) ab chia cho b ®-îc th-¬ng lµ b vµ sè d- lµ a . Bµi 3 (4,0 ®iÓm). T×m gi¸ trÞ cña x biÕt: 1 5 1 7 a) x ; c) 12 (x 6) 4 x 12 ; 2 2 2 4 1954 0,24 76 19,54 b) 53,5 22 (x 1) 12,5 ; d) 2 . 977 (x 4) Bµi 4(2,0 ®iÓm) §Ó tæng kÕt n¨m häc, Tr-êng tiÓu häc Hùng Tiến mua mét sè quyÓn vë ®Ó lµm phÇn th-ëng. Nhµ tr-êng ®· ph¸t 1 sè vë ®· mua cho mét khèi, sau ®ã mua 5 thªm 84 quyÓn vë n÷a vµ sè vë mua thªm nhiÒu h¬n sè vë ®· ph¸t lµ 12 quyÓn. Hái ban ®Çu nhµ tr-êng ®· mua bao nhiªu quyÓn vë? Bµi 5(2,0 ®iÓm) B¹n HuÖ ngåi trªn mét « t« ch¹y víi vËn tèc 45km/giê nh×n thÊy mét tµu háa dµi 100m ®i ng-îc chiÒu qua m¾t m×nh trong thêi gian 3 gi©y. TÝnh vËn tèc tµu háa. Bµi 6( 2,0 ®iÓm) Ba vßi n-íc cïng ch¶y vµo mét c¸i bÓ kh«ng cã n-íc. NÕu vßi thø nhÊt vµ vßi thø hai cïng ch¶y th× ®Çy bÓ trong 6 giê 15 phót. NÕu vßi thø hai cïng ch¶y víi vßi thø ba th× ®Çy bÓ trong 8 giê 20 phót. NÕu vßi thø ba vµ vßi thø nhÊt cïng ch¶y th× ®Çy bÓ trong 5 giê. Hái nÕu më riªng tõng vßi th× sau mÊy giê th× ®Çy bÓ? Bµi 7(4,0 ®iÓm) Cho h×nh ch÷ nhËt ABCD cã diÖn tÝch b»ng 54cm2. Trªn c¹nh AB lÊy ®iÓm M, trªn c¹nh CD lÊy ®iÓm N sao cho AM = CN. a) TÝnh diÖn tÝch h×nh thang AMND. b) Cho AM = 1 AB, BN c¾t CM t¹i I. TÝnh diÖn tÝch tam gi¸c INC. 3 HÕt phßng Gi¸o dôc vµ §µo t¹o NAM ĐÀN H­íng dÉn chÊm ®Ò tuyÓn sinh vµo líp 6 tr­êng THCS NAM ĐÀN N¨m häc 2014 - 2015: M«n To¸n Bµi Néi dung §iÓm 1. a) 4,25 57,43 325 42,57 4,25 4,25 (57,43 42,57) 325 4,25 100 325 100 1,0 b) 4,14 : 3,17 5,37 : 3,17 3 (4,14 5,37) : 3,17 3 9,51;3,17 3 3 3 0 1,0 12 59 24 8 59 9 100 c) 8% 9% 1 1,0 50 100 100 100 100 100 100 1 1 1 1 1 1 1 1 1 1 1 1 d) 2 ( ) 2 ( ) 3 6 10 45 6 12 20 90 2 3 3 4 4 5 9 10 1 1 1 1 1 1 1 1 1 1 1 4 = 2 ( ) 2 ( ) 1 0,8 1,0 2 3 3 4 4 5 9 10 2 10 5 5 2.a) 5a1b chia hÕt cho 5 vµ chia cho 2 d- 1 nªn b 5 0,25 Do 5a15 chia hÕt cho 3, suy ra 5 a 1 5 11 a chia hÕt cho 3, t×m ®-îc a 1;4;7 0,75 b) ab b b a ( 0 a b 9) , do ®ã 10 a b a b b , hay lµ 9 a b (b 1) 0,5 VËy b (b 1) lµ tích hai sè tù nhiªn liªn tiÕp chia hÕt cho 9, suy ra a 8;b 9 . 0,5 1 5 1 7 1 7 1 5 1 3. a) x , suy ra x : , t×m ®-îc x 1 1,0 2 2 2 4 2 4 2 2 2 b) 53,5 22 (x 1) 12,5 , suy ra x 1 (53,5 12,5) : 22 3, t×m ®-îc x 2 1,0 c) 12 (x 6) 4 x 12, suy ra 12 (x 7) 4 x , hay lµ 2 x 21, t×m ®-îc x 10,5 1,0 1954 2400 76 19,54 19,54(24 76) 1954 2 d) 2 , suy ra 2 , nªn x 5 1,0 977 (x 4) 977 (x 4) 977 (x 4) x 4 Sè vë ®· mua: 12 0,5 4. Sè vë mua thªm: 84 Theo s¬ ®å th× sè vë ®· ph¸t lµ: 84 -12 = 72 ( quyÓn) 0,5 Sè vë ®· mua lµ: 72 5 360 ( quyÓn) 1,0 V× ¤ t« vµ tµu háa ®i ng-îc chiÒu nªn: 100 5. Tæng vËn tèc cña « t« vµ tµu háa lµ (m / s) 120(km/giê) 3 1,0 VËy vËn tèc tµu háa lµ: 120 – 45 = 75(km/giê) 1,0 1 25 1 25 6. §æi 6 giê 15 phót = 6 (giê); 8 giê 20 phót = 8 ( giê) 4 4 3 3 4 Tõ bµi ra ta cã: Trong 1 giê vßi thø nhÊt vµ vßi thø hai cïng ch¶y ®-îc ( bÓ) 25 3 Trong 1 giê vßi thø hai vµ vßi thø ba cïng ch¶y ®-îc ( bÓ) 0,5 25 1 Trong 1 giê vßi thø nhÊt vµ vßi thø ba cïng ch¶y ®-îc ( bÓ) 5 4 3 1 6 Do ®ã: Trong 1 giê c¶ ba vßi ch¶y ®-îc: ( ) : 2 ( bÓ) 25 25 5 25 6 4 2 0,25 Trong 1 giê vßi thø ba ch¶y ®-îc: ( bÓ) 25 25 25
  42. Bµi Néi dung §iÓm
  43. 6 3 3 Trong 1 giê vßi thø nhÊt ch¶y ®-îc: ( bÓ) 25 25 25 6 1 1 Trong 1 giê vßi thø hai ch¶y ®-îc: ( bÓ) 0,5 25 5 25 3 25 1 Do ®ã nÕu më riªng th×: Vßi thø nhÊt ch¶y ®Çy bÓ trong thêi gian 1: 8 (giê) 25 3 3 0,25 1 Vßi thø hai ch¶y ®Çy bÓ trong thêi gian 1: 25 (giê) 25 0,25 2 1 Vßi thø ba ch¶y ®Çy bÓ trong thêi gian 1: 12 (giê) 25 2 0,25 7. A M B H×nh vÏ ®óng 1,0 H I K D N C (AM DN) AD (CN BM ) AD a) Ta cã S S 1,0 AMND 2 2 CNMB S 54 Suy ra S ABCD 27(cm2 ) 1,0 AMND 2 2 Gäi BH lµ ®-êng cao tam gi¸c BMC, NK lµ ®-êng cao tam gi¸c NMC 1 BH S 2 S b) tõ AM= AB, suy ra BM = 2 NC nªn BMC NMC 2 , suy ra BH 2 NK 0,5 3 NK SNMC SNMC 1 1 S 54 do ®ã S 2 S , suy ra S S ABCD 3(cm2 ) 0,5 BIC INC INC 3 BNC 3 6 18 Chó ý: - Häc sinh gi¶i c¸ch kh¸c ®óng cho ®iÓm tèi ®a; - Häc sinh kh«ng vÏ h×nh kh«ng chÊm ®iÓm bµi 7. Bµi 5: Cã thÓ gi¶i nh- sau: Qu¶ng ®-êng tÇu hßa ®i trong 3 gi©y S = 100 – 3 x ( 450:36) = 750:12 ( 1 ®iÓm) VËn tèc tÇu hßa lµ S; 3 ( 1 ®iÓm) TRƯỜNG THCS QUẤT ĐỘNG ĐỀ KIỂM TRA KHẢO SÁT CHẤT LƯỢNG LỚP 6 Năm học : 2011 – 2012 Môn : Toán Thời gian : 60 phút Câu 1: ( 2 điểm) .Thực hiện phép tính
  44. 4 3 7 4 5 1 a) b) x 5 8 10 5 2 2 Câu 2: ( 2 điểm) .Tìm x biết : 3 5 a)x 1 b) 2 x x + 1,292 = 2 4 6 Câu 3: ( 2 điểm) Một vận động viên chạy đường dài khởi hành từ điểm xuất phát lúc 6h với vận tốc 12km/h chạy được 2h, anh tăng vận tốc lên 13,5km/h và 2h30phút sau đó thì đến đích. Hỏi a) Vận động viên đó đến đích lúc mấy giờ? b) Tính quãng đường vận động đã chạy ? Câu 4: ( 3 điểm) Cho hình thang ABCD có đáy lớn AB dài 2,2m; đáy bé kém đáy lớn 0,4m, chiều cao bằng nửa tổng hai đáy. Tính D C a) Diện tích hình thang ABCD. b) Diện tích tam giác ABC. c) Diện tích tam giác ACD. A B Câu 5: ( 1 điểm) .Tính hợp lý tổng sau: H a) P = 78 x 31 + 78 x 24 + 78 x 17 + 22 x 72 1 1 1 1 b)S 1 3 9 27 2187 Hết ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ KHẢO SÁT TOÁN 6 (Năm học 2011 – 2012) ___* *___ * Câu Phần Nội dung Điểm
  45. 42 15 28 a 40 40 40 0,5 19 Câu1 0,5 40 2 điểm 4 4 . 5 2 0,5 b 8 0,5 5 3 1 x 4 6 0,25 1 3 Câu 2 x a 2 điểm 6 4 0,5 11 x 12 0,25 2 . x = 2 – 1,292 0,5 b 2 . x = 0,708 0,25 x = 0,354 0,25 a Vận động viên đến đích lúc thời gian là: Câu 3 6h + 2h + 2h30’= 10h30’ 1 2 điểm b Quãng đường vận động viên đã chạy là: 2 . 12 + 13,5 . 2,5 = 57,75 (km) 1 Hình D Vẽ C A B H Câu 4 Đáy bé CD dài là : 2,2 – 0,4 = 1,8 (m) 0,5 3 điểm Đường cao DH dài là : ( 2,2 + 1,8 ) : 2 = 2 (m) 0,5 a Diện tích hình thang ABCD là : ( 2,2 + 1,8 ). 2 : 2 = 0,5 4(m2) 2 b S ABC = 2,2 . 2 : 2 = 2,2(m ) 0,75 c S ACD = 1,8 . 2 : 2 = 1,8(m2) 0,75 P = 78 .( 31 + 24 + 17 ) + 22 . 72 0,25 = 78 . 72 + 22 . 72 Câu 5 a = 72. ( 78 + 22 ) 1điểm = 72 . 100 0,25 = 7200
  46. 1 1 1 3S 3 1 3 9 729 0,25 1 1 1 1 S 1 3 9 729 2187 1 b 3S S 3 2187 6560 2S 2187 3280 S 0,25 2187 A PHÒNG GD&ĐT CHƠN THÀNH ĐỀ KIỂM TRA CHẤT LƯỢNG ĐẦU NĂM NĂM HỌC 2014 – 2015 ĐỀ CHÍNH THỨC Môn : Toán Lớp : 6 (Đề kiểm tra gồm 01 trang) Ngày kiểm tra : 30/8/2014 Thời gian làm bài : 90 phút Câu 1: (2,0 điểm) Đặt tính rồi tính: a) 678,45 + 394,69 b) 2534 - 1785 c) 524,9 5,4 d) 81 : 4 Câu 2: (2,0 điểm) Tìm x biết: a) x 5,84 9,16 b) 5, 6 : x 4 c) 8,75 x 1,25 x 20 5 Câu 3: (1,5 điểm) Tổng của hai số là 121. Tỉ số của hai số đó là . Tìm hai số đó. 6 Câu 4: (2,0 điểm) Một ô tô đi từ tỉnh A lúc 6 giờ và đến tỉnh B lúc 10 giờ 45 phút (cùng ngày). Ô tô đi với vận tốc 48 km/giờ và nghỉ dọc đường mất 15 phút. Tính độ dài quãng đường từ tỉnh A đến tỉnh B. Câu 5: (2,5 điểm) 2 Một mảnh vườn hình thang có đáy lớn 120m, đáy bé bằng đáy lớn. Chiều cao là 3 75m. a) Tính diện tích của mảnh vườn đó. b) Người ta trồng rau trên mảnh vườn đó, giả sử trung bình cứ 100 m2 thu được 250 kg rau. Hỏi trên cả mảnh vườn đó người ta thu hoạch được bao nhiêu tấn rau?
  47. HẾT ĐÁP ÁN VÀ THANG ĐIỂM TOÁN 6 ( Đáp án này gồm 01 trang ) Câu Ý Nội dung Điểm a 1073,14 0,5đ b 749 0,5đ 1 c 2834,46 0,5đ d 20,25 0,5đ a x 9,16 5,84 3,32 0,75đ 2 b x 5,6 : 4 1,4 0,75đ c x 2 0,5đ Tổng số phần bằng nhau là: 0,5 đ 5 + 6 = 11 (phần) Số bé là : 3 0,5 đ 121 : 11 x 5 = 55 Số lớn là: 0,5 đ 121 - 55 = 66 Thời gian ô tô đi từ tỉnh A đến tỉnh B là: 10 giờ 45 phút – 6 giờ = 4 giờ 45 phút 0,5đ Thời gian ô tô chạy trên cả quãng đường là: 4 4 giờ 45 phút – 15 phút = 4 giờ 30 phút = 4,5 giờ 0,75đ Độ dài quãng đường từ tỉnh A đến tỉnh B là: 48 x 4,5 = 216 (km) 0,75đ Đáp số: 216 km 2 Chiều dài đáy bé là : 120 80 (m) 0,5đ 3 a (120 80).75 Diện tích mảnh vườn là : 7500(m2 ) 1đ 2 5 Trung bình cứ 1m2 thu được số kg rau là : 250 :100 2,5 (kg) 0,5đ Cả mảnh vườn đó người ta thu hoạch được số kg rau là: b 7500 2,5 18750 (kg) = 18,75 (tấn) 0,5đ Đáp số: 18,75 tấn rau. TRÖÔØNG THCS BÌNH Chöõ kí cuûa giaùm thò KHAÛO SAÙT CHAÁT LÖÔÏNG ÑAÀU NAÊM GT1 GT2 CHAÂU NAÊM HOÏC 2012-2013 Lôùp: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moân: Toaùn - Lôùp 6 (phaàn TN) Hoï vaø teân: . . . . . . . . . . . . . . . . . . . . . . . . . . Thôøi gian: 20 phuùt (khoâng keå thôøi gian giao ñeà) Soá phaùch: . . . Soá BD: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Chöõ kí cuûa giaùm khaûo Ñieåm baøi KT (baèng Ñieåm baøi KT (baèng Soá phaùch:
  48. GK1 GK2 soá) chöõ) A. TRAÉC NGHIEÄM: (4 ñieåm) Haõy khoanh troøn chöõ caùi ñöùng tröôùc caâu traû lôøi ñuùng. (töø caâu 1 ñeán caâu 7) 3 1 1/ Keát quaû cuûa pheùp tính: laø: 8 4 7 3 5 4 A. B. C. D. 9 4 8 12 2/ Chöõ soá 4 trong soá thaäp phaân 57,456 coù giaù trò laø: 4 4 4 A. 4 B. C. D. 10 100 1000 3/ 3600 g baèng bao nhieâu kilogam? A. 360 kg B. 36 kg D. 3,6 kg D. 0,36 kg 3 4/ Lôùp 6A coù 32 hoïc sinh, trong ñoù soá nam baèng soá nöõ thì soá nam 5 laø: A. 20 em B. 12 em C. 8 em D. 4 em 5/ Neáu N laø taäp hôïp con cuûa taäp hôïp M thì ta vieát: A. N  M B. M  N C. N M D. N M 6/ Cho Q = x N / 17 x 19 . Taäp hôïp Q coù maáy phaàn töû? A. 3 phaàn töû B. 2 phaàn töû C. 1 phaàn töû D. 0 phaàn töû 7/ Keát quaû cuûa pheùp tính: 1 + 2 + 3 + 4 + + 19 + 20 laø: A. 240 B. 210 C. 200 D. 180 8/ Vieát soá thích hôïp vaøo oâ troáng : 7 a) 1 b) 0 5 9/ Ñuùng ghi Ñ, sai ghi S vaøo oâ troáng: 4 cm. a) 75 km2 > 750 ha Hình H b) Hình H coù chu vi laø: 10,28 cm 10/ Ñieàn noäi dung thích hôïp vaøo choã troáng trong caùc caâu sau: a) Muoán tính chu vi hình troøn ta laáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nhaân vôùi 3,14. b) Muoán tính dieän tích hình troøn ta laáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . roài nhaân vôùi 3,14. PHOØNG GD & ÑT BÌNH SÔN ÑEÀ KSCL ÑAÀU NAÊM HOÏC 2012- 2013 TRÖÔØNG THCS BÌNH CHAÂU Moân : Toaùn - Lôùp 6 (Phaàn töï luaän) Thôøi gian laøm baøi : 70 phuùt (khoâng keå thôøi gian giao ñeàà)
  49. B. TÖÏ LUAÄN: (6 ñieåm) Baøi 1: (2 ñieåm) Thöïc hieän pheùp tính: 1 3 5 2 a) b) 8 8 8 5 c) 15,3 + 20 + 64,7 d) 28,5 1,5 Baøi 2: (1 ñieåm) 1 5 Tìm x, bieát: x 4 8 Baøi 3: (2 ñieåm) 2 Moät maûnh vöôøn hình chöõ nhaät coù chieàu daøi 60m. Chieàu roäng baèng 5 chieàu daøi. Tính chu vi vaø dieän tích maûnh vöôøn ñoù. Baøi 4: (1 ñieåm) Moät hình chöõ nhaät coù chieàu daøi gaáp ñoâi chieàu roäng vaø coù dieän tích laø 98 m2. Tính chu vi hình chöõ nhaät ñoù. PHOØNG GD & ÑT BÌNH SÔN ÑEÀ KSCL ÑAÀU NAÊM HOÏC 2012- 2013 TRÖÔØNG THCS BÌNH CHAÂU Moân : Toaùn - Lôùp 6 (Phaàn töï luaän) Thôøi gian laøm baøi : 70 phuùt (khoâng keå thôøi gian giao ñeàà) B. TÖÏ LUAÄN: (6 ñieåm) Baøi 1: (2 ñieåm) Thöïc hieän pheùp tính: 1 3 5 2 a) b) 8 8 8 5 c) 15,3 + 20 + 64,7 d) 28,5 1,5 Baøi 2: (1 ñieåm) 1 5 Tìm x, bieát: x 4 8 Baøi 3: (2 ñieåm) 2 Moät maûnh vöôøn hình chöõ nhaät coù chieàu daøi 60m. Chieàu roäng baèng 5 chieàu daøi. Tính chu vi vaø dieän tích maûnh vöôøn ñoù. Baøi 4: (1 ñieåm) Moät hình chöõ nhaät coù chieàu daøi gaáp ñoâi chieàu roäng vaø coù dieän tích laø 98 m2. Tính chu vi hình chöõ nhaät ñoù. PHOØNG GD & ÑT BÌNH SÔN HÖÔÙNG DAÃN CHAÁM BAØI KHAÛO SAÙT CHAÁT LÖÔÏNG ÑAÀU NAÊM TRÖÔØNG THCS BÌNH CHAÂU NAÊM HOÏC: 2012-2013 Moân: Toaùn 6
  50. A/ TRAÉC NGHIEÄM : (4 ñieåm) Caâu 1 2 3 4 5 6 7 8a 8b 9a 9b Ñaùp aùn C B C B A A B 7 0 Ñ Ñ Bieåu 0,25 0,25 0,25 0,25 0,25 0,25 0,5 0,25 0,25 0,25 0,25 ñieåm 10/ a) hai laàn baùn kính (0,5 ñieåm) b) baùn kính nhaân vôùi baùn kính (0,5 ñieåm) B/ TÖÏ LUAÄN: (6 ñieåm) Baøi 1: 2 ñieåm (moãi pheùp tính ñuùng ñöôïc 0,5 ñieåm) 1 3 4 1 5 2 25 16 9 a) b) 8 8 8 2 8 5 40 40 40 c) 15,3 + 20 + 64,7 = 100 d) 28,5 1,5 = 42,75 Baøi 2: 1 ñieåm 1 5 5 1 5 2 3 x x 4 8 8 4 8 8 Baøi 3: 2 ñieåm Soá ño chieàu roäng: 2 60 24(m) 5 Chu vi maûnh vöôøn hình chöõ nhaät: (60 + 24) 2 = 168 (m) Dieän tích maûnh vöôøn hình chöõ nhaät: 60 24 = 1440 (m2) Baøi 4: 1 ñieåm Vì chieàu daøi gaáp ñoâi chieàu roäng neân ta coù theå chia hình chöõ nhaät thaønh 2 hình vuoâng baèng nhau, moãi hình vuoâng coù dieän tích: 98 : 2 = 49 (m2) Suy ra chieàu roäng hình chöõ nhaät laø 7m (vì 7 7 = 49) vaø chieàu daøi hình chöõ nhaät laø 7 2 = 14 (m) Vaäy chu vi hình chöõ nhaät laø: (7 + 14) 2 = 42 (m) *Ghi chuù: - Hoïc sinh giaûi baèng caùch khaùc, neáu ñuùng vaãn cho ñieåm toái ña; - Toång ñieåm cuûa toaøn baøi laøm troøn ñeán 0,5 ñieåm (Ví duï: 8,25 ñieåm laøm troøn thaønh 8,5 ñieåm; 8,75 ñieåm laøm troøn thaønh 9,0 ñieåm )