Đề thi chọn học sinh giỏi cấp huyện năm học 2017 - 2018 môn Toán lớp 7

docx 1 trang mainguyen 7471
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp huyện năm học 2017 - 2018 môn Toán lớp 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_thi_chon_hoc_sinh_gioi_cap_huyen_nam_hoc_2017_2018_mon_to.docx

Nội dung text: Đề thi chọn học sinh giỏi cấp huyện năm học 2017 - 2018 môn Toán lớp 7

  1. PHÒNG GD&ĐT ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN TRƯỜNG THCS NĂM HỌC: 2017 - 2018 Môn: Toán Lớp: 7 Thời gian làm bài: 120 phút ĐỀ BÀI: Câu 1 (4,0 điểm). 1 1 1 1 a) Thực hiện phép tính: P . 1.2.3 2.3.4 3.4.5 97.98.99 b) Chứng tỏ rằng M 75 42018 42017  42 4 1 25 là số chia hết cho 100. Câu 2 (4,0 điểm). 1 a) Tìm x, y biết rằng: x 3 y 0 . 5 x y z b) Cho các số nguyên dương x, y, z. Chứng minh rằng 1 < < 2 . x y y z z x Câu 3 (3,0 điểm). a) Tìm GTNN của biểu thức A = |x+8| + |x+13| + |x+50|. 5n 3 b) Tìm số tự nhiên n để phân số B = đạt giá trị lớn nhất. 3n 2 Câu 3 (3,0 điểm). Ba vòi nước cùng chảy vào một hồ có dung tích 15,8 m 3 từ lúc không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được 1m3 nước của vòi thứ nhất là 3 phút, vòi thứ hai là 5 phút và vòi thứ ba là 8 phút. Hỏi mỗi vòi chảy được bao nhiêu nước vào hồ ? Câu 5 (6,0 điểm). 5.1. Cho tam giác ABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH  AE tại H, CK  AE tại K. Chứng minh rằng:a a) BH = AK b) ∆MBH = ∆MAH c) Tam giác MHK vuông cân 5.2. Cho đoạn thẳng AB, M là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với MC tại M cắt By ở D. Chứng minh rằng CD = AC + BD. - Đề thi gồm có 05 câu. - Cán bộ coi thi không giải thích gì thêm.