Đề kiểm tra chất lượng học kỳ II môn Toán lớp 7 năm học 2017 – 2018 huyện Gia Lâm

docx 3 trang mainguyen 4940
Bạn đang xem tài liệu "Đề kiểm tra chất lượng học kỳ II môn Toán lớp 7 năm học 2017 – 2018 huyện Gia Lâm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_kiem_tra_chat_luong_hoc_ky_ii_mon_toan_lop_7_nam_hoc_2017.docx

Nội dung text: Đề kiểm tra chất lượng học kỳ II môn Toán lớp 7 năm học 2017 – 2018 huyện Gia Lâm

  1. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II HUYỆN GIA LÂM MÔN TOÁN LỚP 7 NĂM HỌC 2017 – 2018 Thời gian: 90 phút (không kể thời gian giao đề) ĐỀ CHẴN Bài 1: (2,0 điểm) Điểm kiểm tra định kì môn Toán của 20 học sinh được ghi lại như sau: 7 9 6 7 6 5 7 9 5 5 8 7 9 10 7 8 10 9 7 7 a) Dấu hiệu ở đây là gì? Lập bảng “tần số”. b) Tính số trung bình cộng và tìm mốt của dấu hiệu. Bài 2 (2,0 điểm) 2 2 1 2 a) Cho đơn thức M = 2x y xy 2 1 Thu gọn rồi tính giá trị của M tại x = ; y = - 1 2 2 2 b) Tìm đa thức P biết: P + ( x2 – 2y2 + xy) = - 4x2 + 5y2 + xy 3 3 Bài 3 (1,5 điểm) Cho hai đa thức f(x) = - 2x3 + 7 - 6x + 5x4 - 2x3 g(x) = 5x2 + 9x – 2x4 – x2 + 4x3 - 12 a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến. b) Tính f(x) + g(x). Bài 4: (4,0 điểm). Cho tam giác ABC vuông tại A có AB = 6cm; BC = 10 cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân. c) Gọi K là trung điểm của cạnh BC, đường thẳng DK cắt cạnh AC tại M. Tính MC. d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh ba điểm B, M, Q thẳng hàng. Bài 5: (0,5 điểm) 2 Cho đa thức P(x) = ax + bx + c và 2a + b = 0. Chứng tỏ rằng P(-1). P(3) 0. Hết 1
  2. HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II - NĂM HỌC 2016-2017 MÔN: TOÁN 7 ĐỀ CHẴN Bài Câu Tóm tắt cách giải Thang điểm Dấu hiệu: Điểm kiểm tra định kỳ môn Toán của một học sinh 0,5 Bảng “ tần số” a) Giá trị(x) 5 6 7 8 9 10 0,5 Bài 1 Tần số(n) 3 2 7 2 4 2 N=20 ( 2đ) Số trung bình cộng 0.5 b) X = ( 5 . 3 + 6. 2 + 7. 7 + 8 . 2 + 9 . 4 + 10. 2 ) : 20 = 7,4 Mốt của dấu hiệu là: Mo = 7 0,5 1 Đơn thức thu gọn là : M = x 4 y5 a) 2 0,5 Bài 2 1 1 (2đ) Tại x = , y = - 1 đơn thức M có giá trị bằng 2 32 0,5 2 2 P = (- 4x2 + 5y2 + xy) - ( x2 – 2y2 + xy) b) 3 3 2 2 = - 4x2 + 5y2 + xy - x2 + 2y2 - xy 0,5 3 3 2 2 = (- 4x2 - x2 ) + (5y2 + 2y2) +( xy - xy) = - 5x2 + 7y2 0,5 3 3 Thu gọn và sắp xếp: Bài 3 a) 0,5 f(x) = 5x4 - 4x3 - 6x + 7 (1,5đ) g(x) = – 2x4 + 4x3 + 4x2 + 9x - 12 0,5 b) f(x) + g(x) = 3x4 + 4x2 + 3x - 5 0,5 Vẽ hình, ghi GT, KL đúng D 0,5 A M C K B 2
  3. +) ABC vuông tại A(GT) AB2 AC2 BC2 ( định lý Pitago). Thay AB = 6cm, BC =10cm (GT) tính được AC = 8cm. 0,5 Bài 4 +) Vì AB < AC < BC ( 6cm < 8cm < 10cm) Cµ Bµ Aµ ( quan (4,0đ) a) hệ giữa góc và cạnh trong tam giác). 0,5 ACB = ACD (c,g,c) CB = CD CBD cân tại C) ( Hoặc CA  BD tại A và AB = AD(GT) CA là trung trực 1,0 b) của đoạn thẳng BD CB = CD CBD cân tại C) . Trong tam giác BCD có CA và DK là các đường trung tuyến( do A là trung điểm của BD, K là trung điểm của BC). Mà M là giao 1,0 c) điểm của CA và DK M là trọng tâm của tam giác BCD (1) 2 2 16 CM = CA CM = . 8 = 5,33 (cm) 3 3 3 Gọi E là giao điểm của d với AC, F là hình chiếu của D trên d. AE // DF, AD // FE Chứng minh: ADF = FEA (g.c.g) DF = EA mà EA = EC DF= EC 0,25 D d F d) A Q M E C B K CQE = DQF ( g.c.g) CQ = DQ BQ là đường trung tuyến của BCD (2) Từ(1) và (2) BQ đi qua M hay ba điểm B, M , Q thẳng hàng 0,25 Ta có P(-1) = a – b + c P(3) = 9a + 3b + c Bài 5 P(3) - P(-1) = (9a + 3b + c) - (a – b + c) = 8a + 4b 0,25 Mà 2a + b = 0 (GT) 8a + 4b = 0 P(3) - P(-1) = 0 2 (0,5đ) P(3) = P(-1) P(3). P(-1) = P(3) 0 ( đpcm) 0,25 Ghi chú: Các cách giải khác đúng cho điểm tương đương. Nếu không vẽ hình hoặc vẽ hình sai bài 4 thì không chấm điểm. 3