Đề giao lưu HSG huyện cấp THCS - Môn Toán 7

doc 5 trang hoaithuong97 8031
Bạn đang xem tài liệu "Đề giao lưu HSG huyện cấp THCS - Môn Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_giao_luu_hsg_huyen_cap_thcs_mon_toan_7.doc

Nội dung text: Đề giao lưu HSG huyện cấp THCS - Môn Toán 7

  1. UBND HUYỆN VĨNH BẢO ĐỀ GIAO LƯU HSG HUYỆN CẤP THCS PHÒNG GIÁO DỤC VÀ ĐÀO TẠO MÔN TOÁN 7 NĂM HỌC 2017 - 2018 ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút (Đề gồm 01 trang) Câu 1 (2,0 điểm) 2 2 1 1 0,4 0,25 2017 a) Tính M = 9 11 3 5 : . 7 7 1 1,4 1 0,875 0,7 2018 9 11 6 b) Tìm x, biết: 2017 x 2018 x 2019 x 2 . Câu 2 (3,0 điểm) a) Cho a, b, c là ba số thực dương thỏa mãn điều kiện: a b c b c a c a b c a b b a c Hãy tính giá trị của biểu thức: B 1 1 1 . a c b b) Cho hai đa thức: f (x) (x 1)(x 3) và g(x) x3 ax 2 bx 3 Xác định hệ số a;bcủa đa thức g(x)biết nghiệm của đa thức f(x)cũng là nghiệm của đa thức g(x) . c) Tìm các số nguyên dương x, y, z thỏa mãn: x y z xyz . Câu 3 (3,0 điểm) Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. Câu 4 (1,0 điểm) Cho tam giác ABC (AB 1) n 1 22 32 n 2 Chứng minh rằng Sn không là số nguyên. Hết Giám thị số 01 Giám thị số 02
  2. ( Kí, ghi rõ họ và tên) ( Kí, ghi rõ họ và tên) UBND HUYỆN VĨNH BẢO ĐÁP ÁN: MÔN TOÁN 7 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO Câu Nội dung Điểm 2 2 1 1 0,4 0,25 2017 a) Ta có: M 9 11 3 5 : 7 7 1 1,4 1 0,875 0,7 2018 9 11 6 2 2 2 1 1 1 2017 5 9 11 3 4 5 : 7 7 7 7 7 7 0.25 2018 5 9 11 6 8 10 1 1 1 1 1 1 2 5 9 11 3 4 5 2017 : 0.5 Câu 1 1 1 1 7 1 1 1 2018 7 5 9 11 2 3 4 5 2 2 2017 : 0 0.25 7 7 2018 b) Có 2018 x 0 và 0,25 0,25 2017 x 2019 x x 2017 2019 x x 2017 2019 x 2 0,25 => 2017 x 2018 x 2019 x 2 Dấu “=” xảy ra khi và chỉ khi (x – 2017)(2019 – x) ≥ 0 và 2018 x = 0 , suy ra: 2017 ≤ x ≤ 2019 và x = 2018 x 2018 0,25 Vậy x = 2018. a) Vì a, b,c là các số dương nên a b c 0 0,25 Nên theo tính chất dãy tỉ số bằng nhau ta có: a b c b c a c a b a b c b c a c a b 1 c a b a b c a b c b c a c a b 1 1 1 2 0,25 Câu 2 c a b a b b c c a 2 0,25 c a b b a c Mà: B 1 1 1 a c b
  3. a b c a b c B 8 a c b 0,25 Vậy: B 8 b) HS biết tìm nghiệm của f (x) (x 1)(x 3) = 0 x 1; x 3 0,25 Nghiệm của f(x) cũng là nghiệm của g(x) x3 ax 2 bx 3 nên: Thay x 1 vào g(x) ta có: 1 a b 3 0 0,25 Thay x 3 vào g(x) ta có: 27 9a 3b 3 0 Từ đó HS biến đổi và tính được: a 3; b 1 0,5 c) Vì x,y,z Z nên giả sử 1 x y z 1 1 1 1 1 1 3 Theo bài ra: 1 yz yx zx x 2 x 2 x 2 x 2 2 Suy ra: x 3 x 1 0,25 Thay vào đầu bài ta có: 1 y z yz y yz 1 z 0 y 1 z 1 z 2 0 y 1 z 1 2 0,25 y 1 1 y 2 TH1: z 1 2 z 3 y 1 2 y 3 0,25 TH2: (loại) z 1 1 z 2 Vậy (x; y; z) = (1;2;3) và các hoán vị 0,25 A H Câu 3 E D F C Q B P M I K a) Chứng minh được ∆DBM = ∆FMB (ch-gn) 1,0
  4. b) Theo câu a ta có: ∆DBM = ∆FMB (ch-gn) MD = BF (2 cạnh 0,25 tương ứng) (1) +) C/m: ∆MFH = ∆HEM ME = FH (2 cạnh tương ứng) (2) 0,25 Từ (1) và (2) suy ra: MD + ME = BF + FH = BH 0,25 BH không đổi MD + ME không đổi (đpcm) 0,25 c) Vẽ DPBC tại P, KQBC tại Q, gọi I là giao điểm của DK và 0,25 BC +) Chứng minh: BD = FM = EH = CK 0,25 +) Chứng minh: ∆BDP = ∆CKQ (ch-gn) DP = KQ (cạnh tương ứng) 0,25 +) Chứng minh: I·D∆DPIP I·K =Q ∆KQI (g-c-g) ID = 0,25 IK(đpcm A F E I B D C Ta có A· BC 600 B· AC B· CA 1200 1 AD là phân giác của B· AC suy ra I·AC = B· AC 2 1 CE là phân giác của A· CB suy ra I·CA = B· CA 2 1 Câu 4 Suy ra I·AC I·CA = .1200 = 600 A· IC = 1200 2 Do đó A· IE D· IC = 600 0,25 Trên cạnh AC lấy điểm F sao cho AF = AE Xét EAI và FAI có: AE = AF E· AI F· AI AI chung Vậy EAI = FAI (c-g-c) 0,25 suy ra IE =IF (hai cạnh tương ứng) (1) A· IE A· IF = 600 F· IC A· IC A· IF = 600 0,25 Chứng minh DIC = FIC (g-c-g) Suy ra ID = IF (hai cạnh tương ứng) (2) 0,25 Từ (1) và (2) suy ra IDE cân tại 1 1 1 1 Có S 1 1 1 1 Câu 5 n 12 22 32 n 2
  5. 1 1 1 (n 1) ( ) 22 32 n 2 0,25 1 1 1 Đặt A 22 32 n 2 0,25 Do A > 0 nên Sn n 1 1 1 1 1 Mặt khác A 1 1.2 2.3 (n 1).n n 1 1 1 0,25 S (n 1) (1 ) n 2 n 2 (do 0 ) n n n n n 2 S n 1 nên S không là số nguyên 0,25 n n Chú ý: - Học sinh làm cách khác mà đúng vẫn cho điểm tối đa - Hình vẽ sai không chấm điểm bài hình