Bảng tra cứu các bất đẳng thức thường gặp

pdf 3 trang dichphong 9440
Bạn đang xem tài liệu "Bảng tra cứu các bất đẳng thức thường gặp", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbang_tra_cuu_cac_bat_dang_thuc_thuong_gap.pdf

Nội dung text: Bảng tra cứu các bất đẳng thức thường gặp

  1. Nhưng bây giờ còn có ba điều này: Đức tin, sự trông cậy và tình yêu thương. Nhưng điều trọng hơn trong ba điều đó là tình yêu thương. BẢNG TRA CỨU CÁC BẤT ĐẲNG THỨC THƯỜNG GẶP I. Các bất đẳng thức đáng nhớ 1 1. Với mọi x, y ∈ R ta có: x2 + y2 ⩾ 2xy ⇐⇒ xy ⩽ (x2 + y2) 2 1 2. Vì (x + y)2 = x2 + y2 + 2xy ⩾ 4xy nên xy ⩽ (x + y)2 4 1 3. Áp dụng 1: x2 + y2 ⩾ (x + y)2 2 1 4. Áp dụng 2: x2 + y2 + z2 + t2 ⩾ (x + y + z + t)2 4 1 5. Vì x3 + y3 = (x + y)3 − 3xy(x + y) ⩾ (x + y)3 nên: 4 1 x3 + y3 ⩾ (x + y)3 4 3 6. Vì x2 + y2 + xy = (x + y)2 − xy ⩾ (x + y)2 nên ghi nhớ: 4 3 x2 + y2 + xy ⩾ (x + y)2 4 7. Tương tự: 1 x2 + y2 − xy ⩾ (x + y)2 4 1 1 1 8. Ta có: xy ⩽ (x2 + y2); yz ⩽ (y2 + z2); zx ⩽ (z2 + x2) nên: 2 2 2 xy + yz + zx ⩽ x2 + y2 + z2 9. Ta có: (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) ⩾ 3(xy + yz + zx) (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) ⩽ 3(x2 + y2 + z2) nên: 3(xy + yz + zx) ⩽ (x + y + z)2 ⩽ 3(x2 + y2 + z2) 10. Cho a, b > 0 và x, y ∈ R. Ta có: x2 y2 x2 + y2 + ⩾ a b a + b 1
  2. 2 1 1 2 11. Cho a.b ⩾ 1, ta có: + ⩾ 1 + a2 1 + b2 1 + ab 1 1 1 3 12. Cho a, b, c ⩾ 1 , ta có: + + ⩾ 1 + a3 1 + b3 1 + c3 1 + abc ( ) 1 1 1 1 13. Cho a, b > 0 ta có: ⩾ + . a + b 4 a b 27 14. Cho a, b > 0, chứng minh: (a + b)3 ⩾ a2b 4 II. Bất đẳng thức Cauchy cho các số không âm 1. Cho hai số không âm a, b ta có: a + b √ ⩾ ab 2 Xảy ra dấu bằng khi và chỉ khi a = b. 2. Cho ba số không âm a, b, c ta có: a + b + c √ ⩾ 3 abc 3 Xảy ra dấu bằng khi và chỉ khi a = b = c. LUYỆN TẬP a b c 3 1. Cho a, b, c > 0 chứng minh: + + ⩾ b + c c + a a + b 2 a2 b2 c2 a + b + c 2. Cho a, b, c > 0 chứng minh: + + ⩾ . b + c c + a a + b 2 a2 b + c HD. Áp dụng BĐT Cauchy + ⩾ a b + c 4 a3 b3 c3 a2 + b2 + c2 3. Cho a, b, c > 0 chứng minh: + + ⩾ b + c c + a a + b 2 a3 b + c HD. Áp dụng BĐT Cauchy + a ⩾ a2 b + c 4 4. Cho a, b, c > 0 sao cho a + b + c = 1. Chứng minh a + b ⩾ 16abc III. Bất đẳng thức Schwartz (S-vac) “Tích vô hướng nhỏ hơn tích độ dài ”
  3. III. BẤT ĐẲNG THỨC SCHWARTZ (S-VAC) 3 1. Cho hai bộ số a, b và x, y. Ta có: √ √ |ax + by| ⩽ a2 + b2. x2 + y2 x y Xảy ra dấu “=” khi và chỉ khi = hay ay = bx a b 2. Cho hai bộ số a, b, c và x, y, z. Ta có: √ √ |ax + by + cz| ⩽ a2 + b2 + c2. x2 + y2 + z2 x y z Xảy ra dấu “=” khi và chỉ khi = = a b c