24 Đề thi thử học kỳ II môn Toán Lớp 8

doc 30 trang dichphong 6240
Bạn đang xem 20 trang mẫu của tài liệu "24 Đề thi thử học kỳ II môn Toán Lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • doc24_de_thi_thu_hoc_ky_ii_mon_toan_lop_8.doc

Nội dung text: 24 Đề thi thử học kỳ II môn Toán Lớp 8

  1. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 24 ĐỀ THI THỬ HỌC KỲ II - TỐN 8 Thời gian: 45’ ĐỀ SỐ 1 A /. Lý thuyết Câu 1) (1điểm ) Hãy định nghĩa phương trình bậc nhất một ẩn? Áp dụng: Giải phương trình : x – 5 = 3 - x Câu 2) (1điểm) Hãy nêu nội dung của định lý Ta- lét? A 9cm D Biết DE // BC, tỉ số AD và E 3 DB là Tính x x 4 B C B/. Bài tập Bài 1) (2,5điểm) Giải bài tốn bằng cách lập phương trình Một người đi xe máy từ A đến B với vận tốc là 45km/h. Đến B người đĩ làm việc hết 30 phút rồi quay về A với vận tốc 30km/h. Biết tổng thời gian là 6 giờ 30 phút. Hãy tính quãng đường từ A đến B? 1-2x 1-x Bài 2) (1điểm) Giải bất phương trình sau: - 2 ≥ 4 8 Bài 3) (3,5điểm) Cho hình chữ nhật ABCD cĩ AB = 4cm, BC = 3cm. Cẽ đường cao AH của tam giác ADB. a) Chứng minh tam giác AHB và tam giác BCD đồng dạng b) Chứng minh AD2 = DH.DB c) Tính độ dài đoạn thẳng DH, AH Bài 4) (1điểm ) Một hình chĩp tam giác đều cĩ bốn mặt là những tam giác đều cạnh 6cm. Tính diện tích tồn phần của hình chĩp đĩ. ĐỀ SỐ 2 Bài 1: 1/ giải các phương trình sau: 5x 2 7 3x a/ x 6 4 x 2 3 2(x 11) b/ x 2 x 2 x2 4 c/3x= x+8 2/ giải bất phương trình và biểu diễn tập nghiệm trên trục số: 2x(6x – 1) > (3x – 2)(4x+3) 1
  2. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 2: Một người lái ơ tơ dự định đi từ A đến B với vận tốc 48km/h.Nhưng sau khi đi được một giờ với vận tốc ấy,ơ tơ bị tàu hỏa chắn đường trong 10 phút.Do đĩ, để kịp đến B đúng thời gian đã định, người đĩ phải tăng vận tốcthêm6km/h.Tính quãng đường AB. Bài 3: Cho hình chữ nhật ABCD cĩ AB=12cm,BC=9cm.Gọi H là chân đường vuơng gĩc kẻ từ A xuống BD. a/ Chứng minh AHB BCD b/ Tính độ dài đoạn thẳng AH c/ Tính diện tích tam giác AHB. Bài 4: Cho hình chĩp tứ giác đều S.ABCD cĩ cạnh đáy AB=10cm, cạnh bên SA=12cm. a/Tính đường chéo AC. b/Tính đường cao SO rồi tính thể tích của hình chĩp. ĐỀ SỐ 3 Bài 1 (2,0 điểm ) 2 x 1 x 2 Cho bất phương trình: 2 3 2 a / Giải bất phương trình trên . b / Biểu diễn tập nghiệm trên trục số. Bài 2 (2,0 điểm )Giải phương trình. 2x 3(x 1) / 5 x 1 x b / x 1 2x Bài 3 (2,0 điểm ) Một xe máy khởi hành từ Hà Nội đi Nam Định với vận tốc 35km/h. Sau đĩ 20 phút, trên cùng tuyến đường đĩ, một ơ tơ xuất phát từ Nam Định đi Hà Nội với vận tốc 45km/h. Biết quãng đường Nam Định- Hà Nội dài 90 km/h. Hỏi sau bao lâu, kể từ lúc xe máy khởi hành hai xe gặp nhau? Bài 4 (2,0 điểm ) Cho hình hộp chữ nhật ABCD.A’B’C’D’ cĩ AB = 12 cm, AD = 16 cm, AA’ = 25 cm. Tính diện tích tồn phần và thể tích hình hộp chữ nhật. Bài 5 (2,0 điểm ) Cho tam giác ABC cĩ 3 gĩc nhọn, biết AB = 15 cm, AC = 13 cm và đường cao AH = 12 cm. Gọi M, N lần lượt là hình chiếu vuơng gĩc của H xuống AC và AB. a / Chứng minh: VAMN : VACB b / Tính độ dài BC. ĐỀ SỐ 4 Bài 1:Giải các phương trình sau: 2,5điểm x 2 1 2 1/ x 2 x x(x 2) 2/3x = x+6 2
  3. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 2 :(2,5điểm) Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm.Khi thực hiện , mỗi ngày tổ sản xuất được 57 sản phẩm.Do đĩ tổ đã hồn thành trước kế hoạch 1 ngày và cịn vượt mức 13 sản phẩm . Hỏi theo kế hoạch ,tổ phải sản xuất bao nhiêu sản phẩm ? Bài 3:(3điểm) Cho hình thang cân ABCD cĩ AB // DC và AB< DC , đường chéo BD vuơng gĩc với cạnh bênBC.Vẽ đường cao BH. a/Chứnh minh BDC đồng dạng HBC b/Cho BC=15cm ;DC= 25cm. Tính HC và HD c/ Tính diện tích hình thang ABCD. Bài 4 ::(2điểm) Cho hình chĩp tứ giác đều S. ABCD cĩ cạnh đáy AB=10cm , cạnh bên SA=12cm. a/Tính đường chéo AC. b/Tính đường cao SO, rồi tính thể tích của hình chĩp. ĐỀ SỐ 5 Bài 1: (2điểm) Giải bất phương trình và biểu diễn tập nghiệm trên trục số 2 x 3 2x a/ 2 -5x 17 b/ 3 5 Bài 2: (2điểm) Giải các phương trình sau 1 5 3x 12 a/ b/ x 5 3x 1 x 2 x 2 x2 4 Bài 3: (2điểm) Một ơtơ đi từ A đến B với vận tốc 60km/h và đi từ B về A với vận tốc 45km/h. Thời gian cả đi và về hết 7giờ. Tính quãng đường AB Bài 4: (2điểm)Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H a/Chứng minh AEB đđồng dạng với AFC . Từ đĩ suy ra AF.AB = AE. AC b/Chứng minh: ·AEF ·ABC c/Cho AE = 3cm, AB= 6cm. Chứng minh rằng SABC = 4SAEF Bài 5: (2điểm) Cho hình hộp chữ nhật ABCD.A’B’C’D’ cĩ AB= 10cm, BC= 20cm, AA’=15cm a/Tính diện tích tồn phần và thể tích của hình hộp chữ nhật b/Tính độ dài đường chéo AC’ của hình hộp chữ nhật (làm trịn đến chữ số thập phân thứ nhất) ĐỀ SỐ 6 Bài 1: (2,0 điểm) Giai phương trình: 5x 2 5 3x a/ x 1 3 2 b/ (x +2)(3 – 4x) = x2 + 4x + 4 2x2 3x 2 Bài 2: (2,0 điểm) a/ Tìm x sao cho giá trị của biểu thức bằng 2 x2 4 b/ Tìm x sao cho giá trị của hai biểu thức 3
  4. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 6x 1 2x 5 và bằng nhau 3x 2 x 3 Bài 3: (2,0 điểm) a/ Giai bất phương trình: 3(x - 2)(x + 2) 5 4x 5 7 x b)  3 5 Bài 2: ( 2.0 điểm) Giải các phương trình sau: a) 3 – 4x (25 – 2x) = 8x2 + x – 300 4
  5. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) x 2 1 2 b) x 2 x x(x 2) Bài 3: ( 2.0 điểm) Một ơ tơ xuơi dịng từ bến A đến bến B mất 4 giờ và ngược dịng từ bến B về đến bến A mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dịng nước là 2km/h. Bài 4: (2.0 điểm) Tính diện tích tồn phần và thể tích của một lăng trụ đứng , đáy là tam giác vuơng , theo các kích thước ở hình sau: C’ B’ Bài 5: (2.0 điểm) Cho hình chữ nhật ABCD cĩ AB =12cm, BC =9cm. Gọi H là chân đường vuơng gĩc kẻ từ A xuống BD A’ 9 a) Chứng minh AHB : BCD b) Tính độ dài đoạn thẳng AH. C B c) Tính diện tích tam giác AHB 3 4 A ĐỀ SỐ 9 Bài 1: (1,5 đ ) Giải bất phương trình và biểu diễn tập nghiệm trên trục số : x 6 x 2 2 5 3 Bài 2: (2, 5 đ) a/ Giải phương trình: x 5 3x 2 5x 2 7 3x b/ Giải phương trình : x 6 4 x 6 c/ Cho phân thức . Tìm giá trị của x để phân thức cĩ giá trị bằng cĩ giá trị bằng 1. x(x 4) Bài 3: (2,0 đ) Một người đi ơ tơ từ A đến B với vận tốc 35 km/h. Lúc từ B về A người đĩ đi 6 với vận tốc bằng vận tốc lúc đi . Do đĩ thời gian về ít hơn thời gian đi là 30 phút. Tính 5 quãng đường AB. Bài 4: (2 đ)Cho hình chữ nhật ABCD cĩ AB = 12cm ; BC = 9cm. Gọi H là chân đường vuơng gĩc kẻ từ A xuống BD. a/ CMR : AHB và BCD đồng dạng b/ Tính độ dài đoạn thẳng AH c/ Tính diện tích AHB Bài 5 : ( 2 đ) Một hình lăng trụ đứng tứ giác cĩ đáy là hình chữ nhật cĩ kích thước là 7cm và 5cm . Cạnh bên hình lăng trụ là 10 cm . Tính a) Diện tích một mặt đáy b) Diện tích xung quanh 5
  6. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) c) Diện tích tồn phần d) Thể tích lăng trụ ĐỀ SỐ 10 Bài 1 : (3 đ) .Giải các phương trình sau : a) ( 3x – 5 ) ( 4x + 2 ) = 0 . 3x 2 6x 1 b) x 7 2x 3 c) /4x/ = 2x + 12 . Bài 2 :( 1,5 đ)Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số : a) 3x-2 < 4 b) 2-5x ≤ 17 . Bài 3 : ( 1,5đ).Một người đi xe máy từ A đến B với vận tốc 25km/h .Lúc về người đĩ đi với vận tốc 30km/h nên thời gian về ít hơn thời gian đi là 20 phút . Tính quãng đường AB . Bài 4 : ( 2,5đ) . Cho hình chữ nhật ABCD cĩ AB = 12cm , BC = 9cm . Gọi H là chân đường vuơng gĩc kẻ từ A xuớng BD . a) Chứng minh AHB BCD . b) Tính độ dài đoạn thẳng AH . c) Tính diện tích tam giác AHB. Bài 5 : (1,5đ) .Một hình chữ nhật cĩ kích thước là 3cm ,4cm ,5cm . a) Tính diện tích tồn phần của hình hộp chữ nhật . b) Tính thể tích của hình hộp chữ nhật . ĐỀ 11 Bài 1: (2.5 điểm) Giải các phương trình sau: a) 10 + 3(x – 2) = 2(x + 3) – 5 b) 2x(x + 2) – 3(x + 2) = 0 5 4 x 5 c) x 3 x 3 x 2 9 Bài 2: (1.5 điểm) a) Tìm x sao cho giá trị của biểu thức A = 2x – 5 khơng âm. b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số 4x 1 2 x 10x 3 3 15 5 Bài 3: (2.0 điểm) Một xe vận tải đi từ tỉnh A đến tỉnh B, cả đi lẫn về mất 10 giờ 30 phút. Vận tốc lúc đi là 40km/giờ, vận tốc lúc về là 30km/giờ. Tính quãng đường AB. Bài 4: (4.0 điểm) Cho tam giác ABC vuơng tại A cĩ AB = 6cm; AC = 8cm. Kẻ đường cao AH. a) CM: ABC và HBA đồng dạng với nhau b) CM: AH2 = HB.HC 6
  7. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) c) Tính độ dài các cạnh BC, AH d) Phân giác của gĩc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE ĐỀ 12 Bài 1: Giải các phương trình sau: 5 4 x 5 a) 10 + 3(x – 2) =2(x + 3) -5 b) c) 2x(x + 2) – 3(x x 3 x 3 x 2 9 + 2) = 0 Bi 2: Giải các bất phương trình sau v biểu diễn tập nghiệm trn trục số: x 3 13 x 2x 1 a ) 2(3x – 2) 6x + 3(x – 5) b) 7 4 x 2 3(x 2) c) 3x 5 x 3 2 Bài 3: Một xe máy đi từ A đến B với vận tốc 35 km/h. Sau đĩ một giờ, trên cùng tuyến đường đĩ, một ơ tơ đi từ B đến A với vận tốc 45 km/h. Biết quãng đường từ A đến B dài 115 km. Hỏi sau bao lâu, kể từ khi xe máy khởi hành, hai xe gặp nhau? Bài 4: Cho tam gic ABC vuơng tại A, trong đĩ AB = 6cm, AC = 8cm. Vẽ đường cao AH ( AH BC) a) Hy cc cặp tam gic vuơng đồng dạng? Vì sao? b) Tính BC, AH 7
  8. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) ĐỀ 14 Bài 1 : Giải phương trình sau: a) 5x – 2(x – 3) = 3(2x + 5) b) 2x(x – 3) – 2x + 6 = 0 c) |x – 7| = 2x + 3 Bài 2 : Giải bất phương trình và biểu diễn tập nghiệm trên trục số: x 1 x 2 2x a) 5 – 3x > 9 b) 3x 1 c) 3x2 > 0 3 15 5 Bài 3 : Tìm hai số biết số thứ nhất gấp ba lần số thứ hai và hiệu hai số bằng 26. Bài 4 :Cho ABC vuơng tại A , cĩ AB = 6cm , AC = 8cm . Đường phân giác của gĩc ABC cắt cạnh AC tại D .Từ C kẻ CE  BD tại E. AD a) Tính độ dài BC và tỉ số . DC b) Cm ABD ~ EBC. Từ đĩ suy ra BD.EC = AD.BC CD CE c) Cm BC BE d) Gọi EH là đường cao của EBC. Cm: CH.CB = ED.EB. ĐỀ 15 Bài 1: Giải các phương trình sau: a) (x + 1)(2x – 1) = 0 x 3 x 2 b) 2 x 1 x Bài 2 Giải các bất phương trình sau: a) 2x – 3 < 0 2 x 3 2x b) 3 5 Bài 3: Giải bài tốn bằng cách lập phương trình. Năm nay, tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ cịn gấp 2 lần tuổi Phương thơi. Hỏi năm nay Phương bao nhiêu tuổi? (1 điểm). Bài 4: Cho tam giác ABC vuơng tại A với AB = 3cm; AC = 4cm; vẽ đường cao AE. a) Chứng minh ABC EBA. b) Chứng minh AB2 = BE.BC c) Tính độ dài BC; AE. ĐỀ 16 Bài 1 : Giải các phương trình sau : a) 5 x 3 b) 2x 3x 5 c) x 2 3(2x 1) 5x 3 5 x 3 4 6 12 Bài 2 : a) Tìm x sao cho giá trị của biểu thức : A = 2x – 5 khơng m. 8
  9. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 1 b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: x 8 2 x 7 . 2 Bài 3 : Năm nay, tuổi anh gấp 3 lần tuổi em. Anh tính rằng sau 5 năm nữa, tuổi anh gấp 2 lần tuổi em. Tính tuổi anh, tuổi em hiện nay ? Bài 4 : Cho hình bình hành ABCD ( AB > BC ), điểm M AB. Đường thẳng DM cắt AC ở K, cắt BC ở N. 1) Chứng minh : ~ A DK . CNK KM KA 2) Chứng minh : . Từ đĩ chứng minh : KD 2 KM.KN . KD KC 3) Cho AB = 10 cm ; AD = 9 cm ; AM = 6 cm. Tính CN và tỉ số diện tích KCD và KAM . ĐỀ 17 392 - x 390 - x 388- x 386 - x 384 - x Bài 1 : Giải các pt sau : a) + + + + = -5 . 32 34 36 38 40 1 3x -1 2x + 5 4 b) 4 x 3 x 1 5(x 2) . c) - + = 1 . d) x 3 2x 3 2 x -1 x + 3 x2 + 2x - 3 Bài 2 : a) Tìm x sao cho giá trị của biểu thức : A = 2x – 7 luơn luơn dương. b) Tìm x sao cho giá trị của biểu thức -3x khơng lớn hơn giá trị của biểu thức -7x + 5. Bài 3 : Một người đi xe đạp từ A đến B với vận tốc 12 km/h. Cùng lúc đĩ một người đi xe máy cũng đi từ A đến B với vận tốc 30 km/h. Biết rằng người đi xe đạp tới B chậm hơn người đi xe máy là 3 giờ. Tính quãng đường AB? Bài 4 : Cho tam giác ABC cĩ 3 gĩc nhọn và AB (x - 1)(x - 3) b) 4x(x + 2) < (2x - 3)2 c) 3x 3(1 2x) 4 5 2 9
  10. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 4 : Thùng dầu A chứa gấp đơi thùng dầu B. Nếu lấy bớt 20 lít ở thùng A và đổ thêm vào thùng B 10 lít thì số lít dầu trong thùng A bằng 4/3 số lít dầu ở thùng B. Tính xem lúc đầu mỗi thùng cĩ bao nhiêu lít dầu? Bài 5: Cho tam giác ABC cĩ trung tuyến AM. Tia phân giác của gĩc AMB cắt AB tại E, tia phân giác của gĩc AMC cắt AC tại D. AE AD a) So sánh và EB DC b) Gọi I là giao điểm của AM và ED. Cm I là trung điểm ED. CD 3 c) Cho BC=16cm, . Tính ED DA 5 d) Gọi F,K lần lượt là giao điểm EC với AM, DM. Cm EF.KC = FK.EC ĐỀ 19 Bài 1 : Giải các phương trình sau: 2x 5 3(2x +1) 5x + 3 x +1 7 a) 3x 3 x 2 b) - + = x + 3 2 4 6 3 12 3x x 3 x 10 x 6 x 12 c) 2 d) 3 0 x 3 x 3 2003 2007 2001 e) 4(x 5) 3 2x 1 10 f) |x + 4| - 2| x -1| = 5x Bài 2 : Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 2(x 3) x 3 3 5x a) 2 2 b) 0 6 5 4 2x 1 3 5x 4x 1 x-2 2x 5 x 6 x 3 c) 3 d) 2 3 4 18 12 9 6 Bài 3 : Hai người đi xe đạp khởi hành cùng một lúc từ hai địa điểm A, B cách nhau 54 km, đi ngược chiều nhau và gặp nhau sau 2h. Tính vận tốc của hai người đĩ biết rằng vận tốc của 4 người đi từ A bằng vận tốc của người đi từ B. 5 Bài 4 : Cho tam giác ABC cĩ 3 gĩc nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Cm ABE và ACF đồng dạng. b) Cm HE.HB = HC.HF c) Cm gĩc AEF bằng gĩc ABC. d) Cm EB là tia phân giác của gĩc DEF. ĐỀ 20 Bài 1: Giải các phương trình sau: 2 3 5x 4 16x 1 a) = b) x 3 2x 3 2x 5 c) x2 + 4x - 21 x - 3 2 7 2 x 1 x x d) - 1 = - e) 4(x 5) 3 2x 1 10 2007 2008 2009 Bài 2: Giải các bất phương trình sau và biểu diễn nghiệm trên trục số: 10
  11. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) x 3 x 2 2x 3 a) 1 b) 3x(3x 1) (3x 2) 2 4 c) 4 5 10 2x x 3 2x x 1 3 6 15 5x 1 2x 3 x 8 x 1 x 3x 4 d) e) 2x 3 10 6 15 30 3 5 Bài 3: Một tam giác cĩ chiều cao bằng 2/5 cạnh đáy. Nếu chiều cao giảm 2 dm và cạnh đáy tăng 3 dm thì diện tích của nĩ giảm 14 dm2. Tính chiều cao và cạnh đáy của tam giác. Bài 4: Cho tam giác ABC cĩ AB=4cm, AC=6cm, BC=8cm. Đường cao AH(H BC);Tia phân giác gĩc A cắt BC tại D. a/ Chứng minh tam giác ABC đồng dạng tam giác HAC. b/ Chứng minh AC 2 BC.HC c/Tính độ dài các đọan thẳng DB ĐỀ 21 Bài 1 : ( 3.5đ ) Giải bất phương trình sau đây : a) 8( 3x - 2 ) + 14x = 2( 4 – 7x ) + 15x b) ( 3x – 1 )( x – 3 ) – 9 + x2 = 0 c) x 2 2x 3 x 2 1 2 d) x 2 x x 2 2x Bài 2 : ( 1đ ) : Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số : x 1 3x 5 4x 5 1 3 2 6 Bài 4 : ( 1,5đ ) : Giải bài tốn bằng cách lập phương trình : Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện ngư ời ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB Bài 5 : ( 3,5đ ) : Cho ABC vuơng tại A, cĩ AH đường cao. a) Chứng minh : AB2 = BH.BC b) Tia phân giác của gĩc B cắt AH tại D và cắt AC tại E. chứng minh : ADB CED. c) Tam giác ADE là tam giác gì ? Vì sao ? ĐỀ 22 Bài 1: Giải các phương trình sau: (3đ) 1) x2 32 2 x 3 0 11
  12. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 2x 1 3 x 1 2) 12 18 36 x 3 12x 33 3) x 11 x 12 x 11 x 12 Bài 2: Giải bất phương trình và biểu diễn tập hợp nghiệm trên trục số: (1.5đ) x 2 x 5 10x 1 10 15 30 Bài 3: Giải bài tốn bằng cách lập phương trình: (1.5đ) Một ơtơ chạy trên quãng đường AB. Lúc đi từ A đến B ơtơ chạy với vận tốc 50km/h, 1 lúc về từ B đến A ơtơ chạy với vận tốc 60km/h, vì vậy thời gian về ít hơn thời gian đi là 2 giờ. Tính độ dài quãng đường AB. Bài 4: Cho hình hộp chữ nhật ABCD.MNPQ cĩ AB = 15cm, AD = 20 cm và AM = 12cm. Tính thể tích hình hộp chữ nhật ABCD.MNPQ. (0.5đ) Bài 5: Cho ABC vuơng tại A cĩ AB = 15cm. AC = 20cm. Vẽ AH vuơng gĩc với BC tại H. 1) Chứng minh HBA và ABC đồng dạng(1đ) 2) Tính độ dài các cạnh BC, AH (1đ) 3) Vẽ tia phân giác của gĩc BAH cắt cạnh BH tại D. Tính độ dài các cạnh BD, DH (1đ) 4) Trên cạnh HC lấy điểm E sao cho HE = HA, qua E vẽ đường thẳng vuơng gĩc với cạnh BC cắt cạnh AC tại M, qua C vẽ đường thẳng vuơng gĩc với cạnh BC cắt tia phân giác của gĩc MEC tại F. Chứng minh: Ba điểm H, M, F thẳng hàng. (0.5đ) ĐỀ 23 Câu 1. (2 điểm) Cho phương trình (2 – m)x – m + 1 = 0. a) Tìm điều kiện của tham số m để phương trình trên là phương trình bậc nhất 1 ẩn ? b) Giải phương trình với m = 4. Câu 2. (2 điểm) a) Giải phương trình: (x + 3)(x – 5) = (x + 3)(4 – 3x) b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: x 1 x 1 1 6 3 Câu 3. (1,5 điểm) Tử số của một phân số nhỏ hơn mẫu số của nĩ 5 đơn vị. Nếu thêm vào tử số 17 đơn vị và vào mẫu số 2 đơn vị thì được phân số mới bằng số nghịch đảo của phân số ban đầu. Tìm phân số ban đầu. 12
  13. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Câu 4. (3,5 điểm) Cho hình thang cân ABCD (AB//CD, AB < CD), đường cao BH chia cạnh đáy thành hai đoạn DH = 16cm; HC = 9cm. Đường chéo BD vuơng gĩc cạnh bên BC. a) Chứng minh rằng HDB và BCD đồng dạng. b) Tính độ dài đường chéo BD, AC. c) Tính diện tích hình thang ABCD. Câu 5. (1 điểm) 1 Cho 4x + y = 1. Chứng minh rằng 4x2 + y2 ≥ . 5 ĐỀ 24 Bài 1: (2.5 điểm) Giải các phương trình sau: a) 10 + 3(x – 2) = 2(x + 3) – 5 b) 2x(x + 2) – 3(x + 2) = 0 5 4 x 5 c) x 3 x 3 x 2 9 Bài 2: (1.5 điểm) a) Tìm x sao cho giá trị của biểu thức A = 2x – 5 khơng âm. b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số 4x 1 2 x 10x 3 3 15 5 Bài 3: (2.0 điểm) Một xe vận tải đi từ tỉnh A đến tỉnh B, cả đi lẫn về mất 10 giờ 30 phút. Vận tốc lúc đi là 40km/giờ, vận tốc lúc về là 30km/giờ. Tính quãng đường AB. Bài 4: (4.0 điểm) Cho tam giác ABC vuơng tại A cĩ AB = 6cm; AC = 8cm. Kẻ đường cao AH. a) CM: ABC và HBA đồng dạng với nhau b) CM: AH2 = HB.HC c) Tính độ dài các cạnh BC, AH d) Phân giác của gĩc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE 13
  14. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) ĐÁP ÁN ĐÁP ÁN ĐỀ 1 Bài Câu Nội dung 1 Phương trình dạng ax + b = 0, với a,b là hai số đã cho và a 0, được gọi là phương trình bậc nhất≠ một ẩn Áp dụng: x – 5= 3 – x  x + x = 3+ 5  2x = 8  x = 4 2 Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh cịn lại thì nĩ định ra trên hai cạnh đĩ những đoạn thẳng tương ứng tỉ lệ. Áp dụng: DE // BC suy ra AD AE 3 9 4.9 = hay = x = =12cm DB EC 4 x 3 Gọi quãng đường từ A đến B là x(km). 1 ĐK: x > 0 Thì thời gian đi của xe máy là: x (h) 45 x Thời gian về của xe máy là: (h) 30 Tổng thời gian 6 giờ 30 = 13/2 giờ. Thời gian nghĩ 30 phút = ½ giờ Ta cĩ phương trình: x x 1 13 + + = 45 30 2 2 Giải phương trình ta được: x = 108 (thỏa đk) Vậy đoạn đường từ A đến B là: 108km 2 1-2x 1-5x 2(1-2x)-16 1-5x -2≥ ≥ 4 8 8 8 2-4x-16≥1-5x -4x+5x≥-2+16+1 x≥15 14
  15. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 3 a) AHB và BCD cĩ: H = C = 90°(gt) A B ABH = BCD (slt của AB// CD) AHB BCD (g-g) b) ABD và HAD cĩ: A = H = 90°(gt) 4 D chung H c) ABD  HAD(g-g) AD DB D C = AD2 = DH.DB HD AD áp dụng đlí Pitago DB2 = AB2 + AD2 DB = 25 = 5cm Diện tích tồn phần của hình chĩp là S = Sxq + S đ 2 S = pd + a 3 4 ĐÁP ÁN ĐỀ 2 Bài Nội dung Điểm Bài 1(4 đ) 1/ giải các phương trình sau: 5x 2 7 3x a/ x 6 4 12x – 2(5x+2)=(7 – 3x)3 12x – 10x – 4 = 21 – 9x 12x – 10x + 9x = 21 + 4 11x = 25 25 25 x = Vậy: tập nghiệm của phương trình là S=  11 11 x 2 3 2(x 11) b/ x 2 x 2 x2 4 Đ.K.X.Đ: x 2 x 2 3 2(x 11) x 2 x 2 x2 4 (x – 2)(x – 2) – 3(x+2)=2(x-11) = 0 x2 4x 4 3x 6 2x 22 0 x2 9x 20 0 x2 4x 5x 20 0 x(x 4) 5(x 4) 0 (x 4)(x 5) 0 x-4=0 hoặc x-5=0 x=4 (nhận) hoặc x=5 (nhận) Vậy: tập nghiệm của phương trình là:S={4;5} c/3x= x+8 Ta cĩ: 3x=3x khi 3x 0 hay x 0 3x= - 3x khi 3x < 0 hay x < 0 Vậy: để giải phương trình trên ta qui về giải 2 phương trình sau: 1/ 3x = x + 8 ( đk x 0) 2x = 8 x = 4 ( thỏa mãn ĐK) 2/- 3x = x+8 (đk x < 0 ) 15
  16. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) -4x = 8 x = -2 ( thỏa mãn ĐK) Vậy tập nghiệm của phương trình là S={4;-2} 2/ giải bất phương trình và biểu diễn tập nghiệm trên trục số: 2x(6x – 1) > (3x – 2)(4x+3) 12x2 2x 12x2 9x 8x 6 12x2 12x2 2x 9x 8x 6 3x 6 x 2 Vậy nghiệm của bất phương trình là: x 48) x Thời gian dự định đi quãng đường AB là (h) 48 Quãng đường cịn lại là: x – 48 (km) x 48 Thời gian đi trên quãng đường cịn lại sau khi tăng vận tốc là (h) 54 Vì thời gian dự định đi bằng tổng thời gian thực tế đi và thời gian chờ tàu nên ta cĩ phương trình : x 48 1 x 1 54 6 48 Giải phương trình được: x = 120 ( thỏa mãn điều kiện) Vậy: quãng đường AB dài 120km Bài 3:(3 đ) Hình vẽ đúng và đầy đủ a/Chứng minh AHB BCD xét AHB và BCD ta cĩ: ·ABH B· DC(slt) ·AHB B· CD 900 Vậy: AHB BCD (gg) b/ Tính độ dài đoạn thẳng AH vì AHB BCD AH AB AB.BC AH BC BD BD Theo định lý Pitago ta cĩ: BD2 AD2 AB2 122 92 225 BD 15cm BC.AB 12.9 AH 7,2cm BD 15 c/ Tính diện tích tam giác AHB: 1 1 Ta cĩ: S BC.CD .12.9 54cm2 BCD 2 2 16
  17. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) vì AHB BCD nên ta cĩ: 2 SAHB 7,2 SBCD 9 2 7,2 2 SBCD .54 34,56(cm) 9 Bài 4:(1 đ) Hình vẽ đúng và đầy đủ a/Tính đường chéo AC: Theo định lý Pitago trong tam giác vuơng ABC ta cĩ: AC 2 AB2 BC 2 102 102 200 AC 10 2(cm) b/Tính đường cao SO rồi tính thể tích của hình chĩp: AC 10 2 AO 5 2(cm) 2 2 Trong tam giác vuơng SAO ta cĩ: 2 2 2 2 SO SA AO 12 (5 2) 9,7(cm) 1 1 Thể tích của hình chĩp: V S .SO .10.9,7 323,33(cm)3 3 ABCD 3 ĐÁP ÁN ĐỀ SƠ 3 2(x 1) x 2 2 3 2 Bài 1 4(x 1) 12 3(x 2) ( 2,0đ ) 4x 4 12 3x 6 4x 3x 8 6 x 2 Vậy tập nghiệm là: S x / x 2 b/ Biễu diễn tập nghiệm đúng 2x 3(x 1) a / 5 x 1 x Điều kiện : x 0và x 1 MTC: x ( x – 1 ). Quy đồng và khử mẫu . Ta cĩ: 2x2 + 3 ( x2 – 1 ) = 5x2 - 5x 2x2 + 3x2 – 3 = 5x2 – 5x 5x = 3 3 x = (thỏa mãn đk ) 5 3 Bài 2 Vậy tập nghiệm là: S =  ( 2đ ) 5 17
  18. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) b / x 1 2x Điều kiện: 2x 0 x 0 Khi đĩ: x 1 2x x 1 2x hoặc x – 1 = - 2x * x – 1 = 2x x = -1 (khơng thỏa mãn đk ) 1 * x – 1 = - 2x x (thoả mãn đk : x 3 ) 3 1 Vậy tập nghiệm là: S =  3 Bài 3 2 Gọi x ( h ) là thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau.(đk: x > ) ( 2,0đ ) 5 Quãng đường xe máy đi là : 35x ( km ) 2 Ơ tơ xuất phát sau xe máy 24 phút = ( h ) 5 2 Thời gian ơ tơ đi là : x - ( h ) 5 2 Quãng đường ơ tơ đi là : 45( x - ) ( km) 5 2 Ta cĩ phương trình 35x + 45( x - ) = 90 5 27 Giải phương trình ta được: x = ( thỏa mãn điều kiện ) 20 27 Vậy thời gian để hai xe gặp nhau là ( h ) kể từ lúc xe máy khởi hành 20 Vẽ hình đúng Diện tích tồn phần hình hộpchữ nhật B C 12 Stp = Sxq + 2S A = 2 p . h + 2 S 16 D = 2 ( AB + AD ) . AA’ + 2 AB . AD 25 C' = 2 ( 12 + 16 ) . 25 + 2 . 12 . 16 B' = 1400 + 384 A' D' Bài 4 = 1784 ( cm2 ) ( 2đ ) Thể tích hình hộp chữ nhật V = S . h = AB . AD . AA’ = 12 . 16 . 25 = 4800 ( cm3 ) Bài 5 ( 2đ ) Vẽ hình đúng a / Chứng minh: VAMN : VACB A AN AH M Ta cĩ: VANH : VAHCsuyra (g.g) 13 12 AH AC N 2 Suy ra: AH = AN . AC ( 1 ) C B Tương tự ta cĩ H VAMH : VAHB(g.g) AM AH suyra AH AB Suy ra : AH2 = AM . AB ( 2 ) Từ ( 1 ) và ( 2 ) suy ra : AN . AC = AM . AB ( 3 ) 18
  19. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Xét VAMN và VACB cĩ Â chung ( 4 ) Từ ( 3 ) và ( 4 ) suy ra : VAMN : VACB(c.g.c) b / Áp dụng định lý Pytago trong tam giác vuơng AHB và AHC . BH AB2 AH 2 152 122 9(cm) CH AC 2 AH 2 132 122 5(cm) Suy ra: BC = BH + CH = 9 + 5 = 14 (cm ) Vậy: BC = 14 (cm ) ĐÁP ÁN ĐỀ 4 Bài 1:Giải các phương trình sau: 2,5điểm 1/ĐK :x 0 , x 2 ( 0,25điểm) MTC:x(x-2) ( 0,25điểm) Tìm được x(x+1) = 0 ( 0,25điểm) X=0 hoặc x= -1 ( 0,25điểm) X=0 ( loại ) ( 0,25điểm) Vậy S= 1 ( 0,25điểm) 2/Nghiệm của phương trình X=3 ( 0,5điểm) 3 X= ( 0,5điểm) 2 Bài 2 :( 2,5điểm) Gọi số ngày tổ dự định sản xuất là x ngày ,ĐK:x nguyên dương( 0,5điểm) Số ngày tổ thực hiện là x-1 ngày ( 0,25điểm) Số SP làm theo kế hoạch là 50x SP ( 0,25điểm) Số sản phẩmthực hiện được 57(x-1) SP ( 0,25điểm) Theo đầu bài ta cĩ phương trình : 57(x-1) – 50x = 13 ( 0,5điểm) x= 10 ( 0,25điểm) Trả lời :Số ngàytổ dự định sản xuất là 10 ngày ( 0,25điểm) Số sản phẩm tổ sản xuất theo kế hoạch là: 50 . 10 =500 SP ( 0,25điểm) Bài 3: (3điểm) Hình vẽ ( 0,25điểm) a/ BDC đồng dạng HBC (g – g) ( 0,75điểm) b/ HC = 9 cm ( 0,5điểm) HD = 16 cm ( 0,5điểm) c/. BH = 12 cm ( 0,25điểm) AB = KH = 7 cm ( 0,25điểm) Diện tích ABCD =192 cm2 ( 0,5điểm) Bài 4 :(2điểm) Hình vẽ ( 0,25điểm) a/Trong tam giác vuơng ABC tính AC = 102 cm ( 0,5điểm) AC b/OA = 5 2 cm ( 0,25điểm) 2 SO =SA2 OA2 =94 9,7 cm ( 0,5điểm) Thể tích hình chĩp :V 323,33 cm3 ( 0,5điểm) ĐÁP ÁN ĐỀ 5 19
  20. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài Nội dung Điểm Bài 1 (2 đ) a. 2 -5x 17 -5x 15 x 3 Vậy: Nghiệm của bất phương trình là x 3 Biểu diễn tập nghiệm của bất phương trình trên trục số 2 x 3 2x b. 3 5 5(2-x) 0) (2 đ) x Thời gian đi từ A đến B là : (h) 60 x Thời gian đi từ B về A: (h) 45 x x Theo đề bài ta cĩ phương trình: 7 60 45 Giải phương trình được x = 180 (nhận) Quãng đường AB dài 180km 20
  21. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 4 Hình vẽ (2 đ) a. Xét tam giác AEB và tam giác AFC cĩ: ·AEB ·AFC 900 µA chung Do đĩ: AEB S AFC (g.g) AB AE Suy ra: hay AF.AB AE.AC AC AF b. Xét tam giác AEF và tam giác ABC cĩ: Â chung AF AE ( chứng minh trên) AC AB Do đĩ: AEF S ABC (c.g.c) c. AEF S ABC (cmt) 2 2 SAEF AE 3 1 suy ra: SABC AB 6 4 hay SABC = 4SAEF Bài 5 a. Diện tích xung quanh: 2(10+20).15= 900 (cm) (2 đ) Diện tích tồn phần: 900+ 2.200= 1300 (cm2) Thể tích của hình hộp chữ nhật: 10.20.15=3000(cm3) b. AC ' AB2 BC 2 AA'2 102 202 152 26,9(cm) ĐÁP ÁN ĐỀ 6 Bài 1 a/ Giải phương trình: (2,0 đ) 5x 2 5 3x x 1 10x 6x 9x 6 15 4 3 2 x 1 S={1} b/ Giải phương trình: (x + 2)(3 - 4x) = x2 + 4x + 4 x 2 1 5x 0 1 S={-2; } 5 2x2 3x 2 a/ 2 x 2 (loại vì 2 là giá trị khơng xác định) Bài 2 x2 4 (2,0 đ) Vậy khơng tồn tại giá trị nào của x thỏa mãn điều kiện của bài tốn 6x 1 2x 5 7 b/ x 3x 2 x 3 38 a/ Giải bất phương trình: 3(x - 2)(x + 2) -12 Bài 3 b/ Giải phương trình: (2,0 đ) 5x 4 4 5x x 0,8 Gọi x là tử số của phân số (x nguyên) Mẫu số của phân số là: x + 11 x 3 3 Theo giả thiết ta cĩ phương trình: x 9 (x 11) 4 4 Bài 4 (2,0 đ) 21
  22. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 9 Vậy phân số cần tìm là: 20 Hai tam giác ADC và BEC là hai tam giác vuơng cĩ gĩc C chung do đĩ chúng đồng dạng AD AC DC AC BC BE BC EC DC EC Mặt khác tam giác ABC và tam giác DEC lại cĩ gĩc C chung nên chúng đồng dạng với nhau Bài 5 A E (2,0 đ) B D C ĐÁP ÁN ĐỀ 7 Câu Nội dung a) 2011x(5x 1)(4x 30) 0 2011x = 0 hoặc 5x – 1 = 0 hoặc 4x – 30 = 0 1 15 x = 0 hoặc x hoặc x 5 2 1 15 Tập nghiệm S 0; ;  5 2  b) Điều kiện xác định x 3, x 1 Quy đồng mẫu hai vế và khử mẫu 1 x(x 1) x(x 3) 4x 2(x 3)(x 1) 2(x 3)(x 1) 2(x 3)(x 1) Suy ra x(x 1) x(x 3) 4x x2 x x2 3x 4x 2x2 6x 0 2x(x 3) 0 2x 0 hoặc x 3 0 1) 2x 0 x 0 (thoả) 2) x 3 0 x 3 (khơng thỏa) Tập nghiệm S 0 x 6 x 2 2 5 3 3(x 6) 5(x 2) 30 2 15 15 3x 18 5x 10 30 2x 2 x 1 22
  23. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Biểu diễn tập nghiệm Gọi x (km) là quãng đường AB (điều kiện x > 0) x Thời gian đi (h) 30 x 3 Thời gian về (h) 40 x x 45 Ta cĩ phương trình 30 40 60 Giải phương trình tìm được x = 90 (thoả) Vậy quãng đường AB d ài 90km. A B H D C a) Xét AHB và BCD , cĩ: 0 4 A· HB B· CD 90 A· BH B· DC (so le trong) Vậy  AHB (g-g) BCD Xét AHD và BAD , cĩ: A· HD B· AD 900 A· DB chung Vậy  AHD (g-g) BAD AD DH AD2 DH.BD BD DA Ta cĩ:  AHB BCD AH AB AH.BD AB.BC BC BD AB.BC 8.6 48 AH 4,8(cm) BD 82 62 10 Độ dài cạnh AC 62 82 10 2 Diện tích xung quanh Sxq = (6 + 8 + 10)9 = 216 (cm ) 5 Diện tích một mặt đáy 1 Sđ = .6.8 24 (cm2) 2 Diện tích tồn phần 2 Stp = 216 + 2.24 = 264 (cm ) 23
  24. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) ĐÁP ÁN ĐỀ 8 1. a) -3x + 2 > 5 (2điểm) -3x > 3 x 5 ( 4x- 5) > 3( 7 – x) 20x – 25 > 21 – 3x 23x > 46 x > 2 Tập nghiệm S = { x/ x > 2} Biểu diễn trên trục số đúng 2. Giải các phương trình sau: ( 2 điểm) a) 3 – 4x( 25 – 2x) = 8x2 + x – 300 3 – 100x + 8x2 = 8x2 + x – 300 101x = 303 x = 3 Tập nghiệm S = { 3 } x 2 1 2 b) x 2 x x(x 2) * ĐKXĐ: x 0 và x 2 * x ( x + 2 ) – ( x – 2 ) = 2 x2 + x = 0 x ( x + 1 ) = 0 . x = 0 ( khơng thỏa ĐKXĐ) . x = -1 ( thỏa ĐKXĐ) Vậy tập nghiệm S = { -1 } 3. Gọi x(km) là khoảng cách giữa hai bến A và B. Điều kiện x>0 ( 2 điểm) x Vận tốc xuơi dịng là : (km/h) 4 C’ B’ x Vận tốc ngược dịng là: (km/h) 5 A’ 9 Theo đề bài ta cĩ phương trình: x x 2.2 C 4 5 B x 80 ( nhận) 3 4 Vậy khoảng cách giữa hai bến A và B là 80km A 24
  25. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 4 BC = 5 cm 2 (2.0 điểm) Diện tích xung quanh : Sxq = ( 3 + 4 + 5 ) . 9 = 108 ( cm ) 1 Diện tích hai đáy 2. .3. 4 = 12 ( cm2 ) 2 2 Diện tích tồn phần: Stp = 108 + 12 = 120 ( cm ) Thể tích của hình lăng trụ: V = 6. 9 = 54 ( cm3) 5 a) (2.0điểm) Vẽ hình đúng: Hµ Cµ 900 ·ABH B· DC ( so le trong, AB// CD ) VAHB : VBCD b) BD = 15 cm AH = 7,2 cm c) HB = 9,6 cm Diện tích tam giác AHB là 1 1 S = AH.HB .7,2.9,6 34,56 ( cm2 ) 2 2 ĐÁP ÁN ĐỀ 9 Bái 1 Đưa về bpt : 3(x + 6) – 5(x – 2) - 1 Tập nghiệm bpt : x / x 1 Biểu diển : ///////////////////////////( -1 Bài 2 a) Đưa về giải 2 phương trình : 2đ5 * x + 5 = 3x – 2 khi x 5 (1) * - x -5 = 3x – 2 khi x < - 5 (2) Phương trình (1) cĩ nghiệm x = 3,5 ( thoả điều kiện x 5 ) Phương trình (2) cĩ nghiệm x = - 0,75 ( khơng thoả điều kiện ) Vậy nghiệm của phương trình là : x = 3,5 5x 2 7 3x b) x 6 4 25 12x – 2(5x + 2) = 3(7 - 3x) x = 11 Kết luận tập nghiệm x 6 c)Lập phương trình 1(đkxđ x 0; x 4 ) x(x 4) 25
  26. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) x2 -5x + 6 = 0 Giải được phương trình : x = 2 và x = 3và kết luận đúng Bài 3 Gọi quãng đường AB là x(km) (x > 0 ) 2đ Vận tốc từ B dến A : 42 km/h x Thời gian từ A đến B là : (h) 35 x Thời gian từ B đến A là : (h) 42 x x 1 Theo đề bài ta cĩ phương trình : 35 42 2 Giải phương trình được: x = 105 (TM) Quãng đường AB là 105 km Bài 4 Vẽ hình đúng a) Chứng minh được : VAHB đồng dạng VBCD (g-g) A 1 2 B 2đ * Mỗi cặp gĩc đúng : 0,25 9 * Kết luận đúng 0,25 H b) Tính được BD = 15 cm AH AB D C Nêu lên được BC BD Tính được AH = 7, 2 cm C) Tính được HB Tính được diện tích ABH = 34,36 cm2 Bài 5 Vẽ hình đúng 2đ a) 35 cm2 b) 240 cm2 c) 310 cm2 d) 350 cm3 ĐÁP ÁN ĐỀ SỐ 10 Bài 1 : (3đ) .Giải các phương trình sau : a) (1 đ) ( 3x-5)(4x + 2 ) = 0 3x – 5 = 0 hoặc 4x + 2 = 0 (0,25đ) 5 3x – 5 = 0 x = . (0,25đ 3 1 4x + 2 = 0 x = . (0,25đ 2 1 5 Tập nghiệm S = { ; } (0,25đ 2 3 3x 2 6x 1 b) (1 đ) x 7 2x 3 3 ĐKXĐ : x ≠ - 7 ; x ≠ (0,25đ 2 Qui đồng hai vế và khử mẫu : 6x2 – 13x + 6 = 6x2 + 43x + 7 26
  27. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) - 56x = 1 1 x = € ĐKX Đ ( 0,5đ) 56 1 Tập nghiệm S = { } (0,25đ 56 c) (1 đ) /4x/ = 2x + 12 . Ta đưa về giải hai phương trình : 4x = 2x + 12 . khi x ≥ 0 (1) (0,25đ) - 4x = 2x + 12 khi x 0 ) . Thời gian đi : x/ 25 ( h ) . Thời gian về : x /30 ( h) . ( 0,5đ) x x 1 Ta cĩ PT : . ( 0,5đ) 25 30 3 Giải PT : x = 50 . (0,25đ) Quãng đường AB dài 50km . (0,25đ) Bài 4 : ( 2,5đ) . Vẽ hình : (0,25đ) A 12cm B 9cm H D C a ) Chứng minh AHB BCD : ( 0,75đ ) AHB = DCB = 900 ( gt ) . ABH = BDC ( SLT ) . AHB BCD ( g . g ) b )Tính độ dài đoạn thẳng AH : ( 0,75đ ) T ính được BD = 15 cm . (0,25đ Tính được AH = 7,2 cm ( 0,5đ) c ) Tính diện tích tam giác AHB : ( 0,75đ ) Tính được BH = 9,6 cm (0,25đ) AH.HB 7,2.9,6 S 34,56(cm 2 ) ( 0,5đ) AHB 2 2 Bài 5 : (1,5đ) . a) Tính dt tồn phần : (1đ) . 2 Tính được Sxq = 70 (cm ) .(0,25đ) 2 Tính được S đáy = 12 (cm ) (0,25đ) 27
  28. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) 2 Tính được Stp = 94 (cm ) . ( 0,5đ) b) V = a .b .c = 3.4.5 = 60 (cm3 ) ( 0,5đ) HƯỚNG DẪN ĐÁP ÁN MƠN TỐN - LỚP 8 – HKII 11-12 Bài 1: 1) x2 32 2 x 3 0 x 3 x 3 2 x 3 0 x 3 x 3 2 0 x 3 x 5 0 (0.5đ) x 3 0 x 5 0 x 3 x 5 Vậy tập hợp nghiệm của phương trình trên là : S = 5; 3 (0.5đ) 2x 1 3 x 1 2) 12 18 36 6x 3 6 2x 1 (0.25đ) 36 36 36 6x 3 6 2x 1 (0.25đ) 8x 9 1 8x 1 9 8x 8 x 1 Vậy tập hợp nghiệm của phương trình trên là : S = 1 (0.5đ) x 3 12x 33 2) x 11 x 12 x 11 x 12 Mẫu chung: x 11 x 12 ĐKXĐ : x -11 ; x 12 (0.25đ) Quy đồng mẫu hai vế và khử mẫu, ta được: x x 12 3 x 11 12x 33 (0.25đ) x2 12x 3x 33 12x 33 x2 3x 0 x x 3 0 x 0 x 3 0 x 0 (nhân) x 3 (nhân) Vậy tập hợp nghiệm của phương trình trên là : S = 0; 3 (0.5đ) 28
  29. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 2: x 2 x 5 10x 1 1) 10 15 30 3x 6 2x 10 10x 1 (0.25đ) 30 30 30 3x 6 2x 10 10x 1 5x 16 10x 1 5x 10x 1 16 5x 15 x 3 Vậy bất phương trình trên cĩ nghiệm : x 3 (0.75đ) Biểu diễn tập hợp nghiệm đúng (0.5đ) Bài 3: Gọi x(km) là độ dài quãng đường AB, x>0 (0.25đ) x Thời gian đi từ A đến B mất: (h) (0.25đ) 50 x Thời gian về từ B đến A mất: (h) (0.25đ) 60 Theo đề bài, ta cĩ phương trình : x x 1 (0.25đ) 50 60 2 Giải ra ta được: x = 150 ( nhận) (0.25đ) Vậy: Quãng đường AB dài 150km (0.25đ) N P Bài 4: M Q Thể tích hình hộp chữ nhật ABCD.MNPQ 12cm V AB  AD  AM =15 2012 3600(cm3 ) (0.5đ) 15cm B C A 20cm D 29
  30. “Một gánh sách hay khơng bằng một người thầy giỏi”(ngạn ngữ TQ) Bài 5: 1) Xét HBA và ABC cĩ A A· BC chung A· HB B· AC 900 HBA  ABC (g-g) (1đ) F 2) Vì ABC vuơng tại A (gt) BC 2 AB2 AC 2 ( Đ/lý Pytago) M = 152 202 625 BC = 25(cm) (0.5đ) Vì HBA  ABC (cmt) HA BA B D H E C AC BC HA 15 20 25 2015 Nên AH 12 (cm) (0.5đ) 25 3) Vì HBA  ABC (cmt) HB BA HB 15 AB BC 15 25 1515 Nên BH 9 (cm) 25 Xét ABC cĩ AD là phân giác trong (gt) DB AB 15 5 DH AH 12 4 DB DH DB DH DB DH BH 9 1 5 4 5 4 5 4 9 9 DB 51 5 (cm) và DH 4 1 4 (cm) (0.5đ + 0.5đ) 4) Chứng minh CEF vuơng cân tại C CE = CF Xét AHC cĩ: CM CE ME // AH ( cùng vuơng gĩc với BC) (1) ( ĐL Ta-let) MA EH CM CF Mà: CE = CF (cmt) và HE = HA (gt) MA AH Ta cĩ: CF // AH ( cùng vuơng gĩc với BC) Xét MCF và MAH cĩ M· CF M· AH ( So le trong; CF // AH) CM CE (cmt) MA EH MCF  MAH (c-g-c) (1đ) C· MF A· MH Mà A· MH H· MC 1800 C· MF H· MC 1800 Ba điểm H, M, F thẳng hàng. (0.5đ) 30